Detection of Nitric Oxide via Electronic Paramagnetic Resonance in Mollusks

  • Paula Mariela González
  • Susana PuntaruloEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1747)


Electronic paramagnetic resonance (EPR) is an appropriate tool to identify free radicals formed in tissues under normal as well as stressful conditions. Since nitric oxide (NO) as a free radical has paramagnetic properties it can be detected by EPR. The use of spin traps highly improves the sensitivity allowing NO identification, detection and quantification at room temperature in vitro and in vivo conditions. NO production in animals is almost exclusively associated to an enzyme family known as Nitric Oxide Synthases (NOSs). The digestive glands of mollusks are a major target for oxidative disruption related to environmental stress. A simple EPR-methodology to asses both, the presence of NO and its rate of generation in tissues from different mollusk species, is reported here.

Key words

Electronic paramagnetic resonance Bivalves NO content NO generation 



This study was supported by grants from the UBA (20020130100383BA), ANPCyT (PICT 00845), and CONICET (PIP 00697). S.P. and P.M.G. are career investigators from CONICET.


  1. 1.
    Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redoxactivated forms. Science 258:1898–1902CrossRefPubMedGoogle Scholar
  2. 2.
    Atkins P, de Paula J (2008) Química física, 8° Edición edn. Médica Panamericana, Buenos Aires, p 1064Google Scholar
  3. 3.
    Huie RE, Padmaja S (1993) The reaction of NO with superoxide. Free Radic Res Commun 18(4):195–199CrossRefPubMedGoogle Scholar
  4. 4.
    Koppenol WH, Moreno JJ, Pryor WA, Ischiropoulos H, Beckman JS (1992) Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol 5:834–842CrossRefPubMedGoogle Scholar
  5. 5.
    Ducrocq C, Blanchard B, Pignatelli B, Ohshima H (1999) Peroxynitrite: an endogenous oxidizing and nitrating agent. Cell Mol Life Sci 55(8–9):1068–1077CrossRefPubMedGoogle Scholar
  6. 6.
    O'Donnell VB, Freeman BA (2001) Interactions between nitric oxide and lipid oxidation pathways: implications for vascular disease. Circ Res 88:12–21CrossRefPubMedGoogle Scholar
  7. 7.
    Wink DA, Mitchell JB (1998) Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 25:434–456CrossRefPubMedGoogle Scholar
  8. 8.
    Livingstone DR (1991) Organic xenobiotic metabolism in marine invertebrates. Adv Comp Environ Physiol 7:45–185CrossRefGoogle Scholar
  9. 9.
    Winston GW, Di Giulio RT (1991) Pro-oxidant and antioxidant mechanisms in aquatic organisms. Aquat Toxicol 19:137–167CrossRefGoogle Scholar
  10. 10.
    Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278CrossRefPubMedGoogle Scholar
  11. 11.
    Abele D, Puntarulo S (2004) Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp Biochem Physiol A 138:405–415CrossRefGoogle Scholar
  12. 12.
    Knowles RG (1997) Nitric oxide biochemistry. Biochem Soc Trans 25(3):895–901CrossRefPubMedGoogle Scholar
  13. 13.
    Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Imamura M, Yang J, Yamakawa M (2002) cDNA cloning, characterization and gene expression of nitric oxide synthase from the silkworm, Bombyx mori. Insect Mol Biol 11:257–265CrossRefPubMedGoogle Scholar
  15. 15.
    Jacklet JW (1997) Nitric oxide signaling in invertebrates. Invertebr Neurosci 3:1–14CrossRefGoogle Scholar
  16. 16.
    González PM, Puntarulo S (2016) Fe effects on the oxidtive and nitrosative metabolism in the Antarctic limpet Nacella concinna. Comp Biochem Physiol A 200:56–63CrossRefGoogle Scholar
  17. 17.
    González PM, Abele D, Puntarulo S (2008) Iron and radical content in Mya arenaria. Possible sources of NO generation. Aquat Toxicol 89:122–128CrossRefPubMedGoogle Scholar
  18. 18.
    González PM, Abele D, Puntarulo S (2010) Exposure to excess of iron in vivo affects oxidative status in the bivalve Mya arenaria. Comp Biochem Physiol C 152:167–174Google Scholar
  19. 19.
    González PM, Puntarulo S (2011) Iron and nitrosative metabolism in the Antarctic mollusc Laternula elliptica. Comp Biochem Physiol C 153:243–250Google Scholar
  20. 20.
    Simontacchi M, Buet A, Puntarulo S (2011) The use of electron paramagnetic resonance (EPR) in the study of oxidative damage to lipids in plants. In: Catalá A (ed) Lipid peroxidation: biological implications. Transworld Research Network, Kerala, pp 141–160Google Scholar
  21. 21.
    Tarpey MM, Wink DA, Grisham MB (2004) Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am J Physiol Regul Integr Comp Physiol 286:R431–R444CrossRefPubMedGoogle Scholar
  22. 22.
    Sun Y, Yin Y, Zhang J, Yu H, Wang X, Wu J, Xue Y (2008) Hydroxyl radical generation and oxidative stress in Carassius auratus liver, exposed to pyrene. Ecotoxicol Environ Saf 71:446–453CrossRefPubMedGoogle Scholar
  23. 23.
    Galatro G, Puntarulo S (2016) Measurement of nitric oxide (NO) generation rate by chloroplasts employing electron spin resonance (ESR). In: Gupta JK (ed) Plant nitric oxide: methods and protocols, methods in molecular biology, vol 1424. Springer Science+Business Media, New York, pp 103–112CrossRefGoogle Scholar
  24. 24.
    Malanga G, Estevez MS, Calvo J, Puntarulo S (2004) Oxidative stress in limpets exposed to different environmental conditions in the Beagle Channel. Aquat Toxicol 69:299–309CrossRefPubMedGoogle Scholar
  25. 25.
    Komarov AM, Lai CS (1995) Detection of nitric oxide production in mice by spin trapping electron paramagnetic resonance spectroscopy. Biochim Biophys Acta 1272:29–36CrossRefPubMedGoogle Scholar
  26. 26.
    Hevel JM, Marletta MA (1994) Nitric-oxide synthase assays. Methods Enzymol 233C:250–258CrossRefGoogle Scholar
  27. 27.
    Jasid S, Simontacchi M, Bartoli CG, Puntarulo S (2006) Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins. Plant Physiol 142:1246–1255CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Kotake Y, Tanigawa T, Tanigawa M, Ueno I, Randel Allen D, Lai C-S (1996) Continuous monitoring of cellular nitric oxide generation by spin trapping with an iron-dithiocarbamate complex. Biochim Biophys Acta 1289:362–368CrossRefPubMedGoogle Scholar
  29. 29.
    Malanga G, Puntarulo S (2012) The use of electron paramagnetic resonance (EPR) in the study of oxidative damage to lipids in aquatic systems. In: Abele D, Zenteno-Savín T, Vázquez-Medina JP (eds) Oxidative stress in aquatic ecosystems. Willey-Blackwell, Oxford, pp 448–457Google Scholar
  30. 30.
    Borg DC (1976) Applications of electron spin resonance in biology. In: Pryor WA (ed) Free radicals in biology. Academic Press Inc., New York, pp 69–147CrossRefGoogle Scholar
  31. 31.
    Gisone P, Boveris AD, Dubner D, Perez MR, Robello E, Puntarulo S (2003) Early neuroprotective effect of nitric oxide in developing rat brain irradiated in utero. Neurotoxicology 24:245–253CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Facultad de Farmacia y Bioquímica, FisicoquímicaUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Instituto de Bioquímica y Medicina Molecular (IBIMOL)CONICET-Universidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations