Advertisement

Quantum Cascade Lasers-Based Detection of Nitric Oxide

  • Gracia Montilla-Bascón
  • Julien Mandon
  • Frans J. M. Harren
  • Luis A. J. Mur
  • Simona M. Cristescu
  • Elena PratsEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1747)

Abstract

Despite the established importance of nitric oxide (NO) in many physiological and molecular processes in plants, most methods for quantifying NO are open to criticism This reflects the differing methods either lacking specificity or sensitivity, or even from an undue dependence of results on experimental conditions (i.e., chemical concentrations, pH, etc.). In this chapter we describe a protocol to measure gaseous NO produced by a biological sample using quantum cascade laser (QCL)-based spectroscopy. This technique is based on absorption of the laser light by the NO molecules which have been passed from a biological sample into an optical s cell that is equipped with two mirrors placed at both ends. This design greatly increases the interaction path length with the NO molecules due to multiple reflections of the light coupled inside the cell. Thus, the method is able to provide online, in planta measurements of the dynamics of NO production, being highly selective and sensitive (down to ppbv levels;1 ppbv = part per billion by volume mixing ratio = 1:10−9).

Key words

Nitric oxide Quantum cascade laser Laser based infrared spectroscopy Multipass cell Drought stress 

Notes

Acknowledgment

This work was supported by the Spanish Ministry of Economy and Competitiveness [AGL2016-78965-R], and the European Regional Development Funds, province of Gelderland [2009-010034]. The work of LM was supported by the BBSRC LINK Grant (BB/I016937/1).

References

  1. 1.
    Bethke PC, Badger MR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16(2):332–341.  https://doi.org/10.1105/tpc.017822 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Clarke A, Desikan R, Hurst RD, Hancock JT, Neill SJ (2000) NO way back: nitric oxide and programmed cell death in Arabidopsis Thaliana suspension cultures. Plant J 24(5):667–677.  https://doi.org/10.1046/j.1365-313x.2000.00911.x CrossRefPubMedGoogle Scholar
  3. 3.
    Delledonne M, Xia YJ, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394(6693):585–588CrossRefPubMedGoogle Scholar
  4. 4.
    Leshem YY (1996) Nitric oxide in biological systems. Plant Growth Regul 18(3):155–159.  https://doi.org/10.1007/bf00024375 CrossRefGoogle Scholar
  5. 5.
    Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159(1):11–35.  https://doi.org/10.1046/j.1469-8137.2003.00804.x CrossRefGoogle Scholar
  6. 6.
    Mur LAJ, Mandon J, Cristescu SM, Harren FJM, Prats E (2011) Methods of nitric oxide detection in plants: a commentary. Plant Sci 181(5):509–519.  https://doi.org/10.1016/j.plantsci.2011.04.003 CrossRefPubMedGoogle Scholar
  7. 7.
    Huang X, von Rad U, Durner J (2002) Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells. Planta 215(6):914–923.  https://doi.org/10.1007/s00425-002-0828-z CrossRefPubMedGoogle Scholar
  8. 8.
    Wang Y, Nikodem M, Zhang E, Cikach F, Barnes J, Comhair S, Dweik RA, Kao C, Wysocki G (2015) Shot-noise limited faraday rotation spectroscopy for detection of nitric oxide isotopes in breath, urine, and blood. Sci Rep 5.  https://doi.org/10.1038/srep09096
  9. 9.
    Bakhirkin YA, Kosterev AA, Roller C, Curl RF, Tittel FK (2004) Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection. Appl Opt 43(11):2257–2266.  https://doi.org/10.1364/ao.43.002257 CrossRefPubMedGoogle Scholar
  10. 10.
    Kosterev AA, Malinovsky AL, Tittel FK, Gmachl C, Capasso F, Sivco DL, Baillargeon JN, Hutchinson AL, Cho AY (2001) Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser. Appl Opt 40(30):5522–5529.  https://doi.org/10.1364/ao.40.005522 CrossRefPubMedGoogle Scholar
  11. 11.
    McCurdy MR, Bakhirkin Y, Wysocki G, Tittel FK (2007) Performance of an exhaled nitric oxide and carbon dioxide sensor using quantum cascade laser-based integrated cavity output spectroscopy. J Biomed Opt 12(3).  https://doi.org/10.1117/1.2747608
  12. 12.
    Menzel L, Kosterev AA, Curl RF, Tittel FK, Gmachl C, Capasso F, Sivco DL, Baillargeon JN, Hutchinson AL, Cho AY, Urban W (2001) Spectroscopic detection of biological NO with a quantum cascade laser. Appl Phys B-Lasers Opt 72(7):859–863CrossRefGoogle Scholar
  13. 13.
    Silva ML, Sonnenfroh DM, Rosen DI, Allen MG, O'Keefe A (2005) Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL. Appl Phys B-Lasers Opt 81(5):705–710.  https://doi.org/10.1007/s00340-005-1922-2 CrossRefGoogle Scholar
  14. 14.
    Ganser H, Horstjann M, Suschek CV, Hering P, Murtz M (2004) Online monitoring of biogenic nitric oxide with a QC laser-based faraday modulation technique. Appl Phys B-Lasers Opt 78(3–4):513–517.  https://doi.org/10.1007/s00340-003-1379-0 CrossRefGoogle Scholar
  15. 15.
    Ganser H, Urban W, Brown AM (2003) The sensitive detection of NO by faraday modulation spectroscopy with a quantum cascade laser. Mol Phys 101(4–5):545–550.  https://doi.org/10.1080/00268970210159460 CrossRefGoogle Scholar
  16. 16.
    Lewicki R, Doty JH III, Curl RF, Tittel FK, Wysocki G (2009) Ultrasensitive detection of nitric oxide at 5.33 mu m by using external cavity quantum cascade laser-based faraday rotation spectroscopy. Proc Natl Acad Sci U S A 106(31):12587–12592.  https://doi.org/10.1073/pnas.0906291106 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kluczynski P, Lundqvist S, Westberg J (2011) Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 μm. Applied Physics B 103(2):451–549CrossRefGoogle Scholar
  18. 18.
    McManus JB, Shorter JH, Nelson DD, Zahniser MS, Glenn DE, McGovern RM (2008) Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air. Appl Phys B-Lasers Opt 92(3):387–392.  https://doi.org/10.1007/s00340-008-3129-9 CrossRefGoogle Scholar
  19. 19.
    Moeskops BWM, Cristescu SM, Harren FJM (2006) Sub-part-per-billion monitoring of nitric oxide by use of wavelength modulation spectroscopy in combination with a thermoelectrically cooled, continuous-wave quantum cascade laser. Opt Lett 31(6):823–825.  https://doi.org/10.1364/ol.31.000823 CrossRefPubMedGoogle Scholar
  20. 20.
    Nelson DD, Shorter JH, McManus JB, Zahniser MS (2002) Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer. Appl Phys B-Lasers Opt 75(2–3):343–350.  https://doi.org/10.1007/s00340-002-0979-4 CrossRefGoogle Scholar
  21. 21.
    Lyngkjaer MF, Carver TLW, Zeyen RJ (2001) Virulent Blumeria graminis infection induces penetration susceptibility and suppresses race-specific hypersensitive resistance against avirulent attack in Mla1-barley. Physiol Mol Plant Pathol 59(5):243–256.  https://doi.org/10.1006/pmpp.2001.0360 CrossRefGoogle Scholar
  22. 22.
    Zeyen RJ, Bushnell WR, Carver TLW, Robbins MP, Clark TA, Boyles DA, Vance CP (1995) Inhibiting phenylalanine ammonia-lyase and cinnamyl-alcohol dehydrogenase suppresses Mla1 (HR) but not Mlo5 (non-HR) barley powdery mildew resistances. Physiol Mol Plant Pathol 47(2):119–140.  https://doi.org/10.1006/pmpp.1995.1047 CrossRefGoogle Scholar
  23. 23.
    Cristescu SM, Persijn ST, Hekkert STL, Harren FJM (2008) Laser-based systems for trace gas detection in life sciences. Appl Phys B-Lasers Opt 92(3):343–349.  https://doi.org/10.1007/s00340-008-3127-y CrossRefGoogle Scholar
  24. 24.
    Cristescu SM, Marchenko D, Mandon J, Hebelstrup K, Griffith GW, Mur LAJ, Harren FJM (2013) Spectroscopic monitoring of NO traces in plants and human breath: applications and perspectives. Appl Phys B-Lasers Opt 110(2):203–211.  https://doi.org/10.1007/s00340-012-5050-5 CrossRefGoogle Scholar
  25. 25.
    Hebelstrup KH, Shah JK, Simpson C, Schjoerring JK, Mandon J, Cristescu SM, Harren FJM, Christiansen MW, Mur LAJ, Igamberdiev AU (2014) An assessment of the biotechnological use of hemoglobin modulation in cereals. Physiol Plant 150(4):593–603.  https://doi.org/10.1111/ppl.12115 CrossRefPubMedGoogle Scholar
  26. 26.
    Sivakumaran A, Akinyemi A, Mandon J, Cristescu SM, Hall MA, Harren FJM, Mur LAJ (2016) ABA suppresses Botrytis cinerea elicited NO production in tomato to influence H2O2 generation and increase host susceptibility. Front Plant Sci 7:709.  https://doi.org/10.3389/fpls.2016.00709 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Prats E, Mur LAJ, Sanderson R, Carver TLW (2005) Nitric oxide contributes both to papilla-based resistance and the hypersensitive response in barley attacked by Blumeria graminis f. sp hordei. Mol Plant Pathol 6(1):65–78.  https://doi.org/10.1111/j.1364-3703.2004.00266.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Gracia Montilla-Bascón
    • 1
  • Julien Mandon
    • 2
  • Frans J. M. Harren
    • 2
  • Luis A. J. Mur
    • 3
  • Simona M. Cristescu
    • 2
  • Elena Prats
    • 1
    Email author
  1. 1.Institute for Sustainable AgricultureSpanish Council for Scientific Research (CSIC)CórdobaSpain
  2. 2.Department of Molecular and Laser PhysicsRadboud UniversityNijmegenThe Netherlands
  3. 3.Institute of Biological, Environmental and Rural SciencesUniversity of AberystwythAberystwythUK

Personalised recommendations