Skip to main content

Real-Time Imaging of Nitric Oxide Signals in Individual Cells Using geNOps

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1747))

Abstract

Nitric oxide (NO) is a versatile signaling molecule which regulates fundamental cellular processes in all domains of life. However, due to the radical nature of NO it has a very short half-life that makes it challenging to trace its formation, diffusion, and degradation on the level of individual cells. Very recently, we expanded the family of genetically encoded sensors by introducing a novel class of single fluorescent protein-based NO probes—the geNOps. Once expressed in cells of interest, geNOps selectively respond to NO by fluorescence quench, which enables real-time monitoring of cellular NO signals. Here, we describe detailed methods suitable for imaging of NO signals in mammalian cells. This novel approach may facilitate a broad range of studies to (re)investigate the complex NO biochemistry in living cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Forstermann U, Closs EI, Pollock JS et al (1994) Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 23(6 Pt 2):1121–1131

    Article  CAS  PubMed  Google Scholar 

  2. Hakim TS, Sugimori K, Camporesi EM et al (1996) Half-life of nitric oxide in aqueous solutions with and without haemoglobin. Physiol Meas 17(4):267–277

    Article  CAS  PubMed  Google Scholar 

  3. Boens N, Leen V, Dehaen W (2012) Fluorescent indicators based on BODIPY. Chem Soc Rev 41(3):1130–1172. http://sci-hub.tw/10.1039/C1CS15132K

    Article  CAS  PubMed  Google Scholar 

  4. Han J, Burgess K (2010) Fluorescent indicators for intracellular pH. Chem Rev 110(5):2709–2728. http://sci-hub.tw/10.1021/cr900249z

    Article  CAS  PubMed  Google Scholar 

  5. Kojima H, Urano Y, Kikuchi K et al (1999) Fluorescent indicators for imaging nitric oxide production. Angew Chem Int Ed Engl 38(21):3209–3212

    Article  CAS  PubMed  Google Scholar 

  6. Wang J, Zhao Y, Wang C et al (2015) Organelle-specific nitric oxide detection in living cells via HaloTag protein labeling. PLoS One 10(4):e0123986. http://sci-hub.tw/10.1371/journal.pone.0123986

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sato M, Hida N, Umezawa Y (2005) Imaging the nanomolar range of nitric oxide with an amplifier-coupled fluorescent indicator in living cells. Proc Natl Acad Sci U S A 102(41):14515–14520. http://sci-hub.tw/10.1073/pnas.0505136102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Planchet E, Kaiser WM (2006) Nitric oxide (NO) detection by DAF fluorescence and chemiluminescence: a comparison using abiotic and biotic NO sources. J Exp Bot 57(12):3043–3055. http://sci-hub.tw/10.1093/jxb/erl070

    Article  CAS  PubMed  Google Scholar 

  9. Namin SM, Nofallah S, Joshi MS et al (2013) Kinetic analysis of DAF-FM activation by NO: toward calibration of a NO-sensitive fluorescent dye. Nitric Oxide 28:39–46. http://sci-hub.tw/10.1016/j.niox.2012.10.001

    Article  CAS  PubMed  Google Scholar 

  10. Li H, Wan A (2015) Fluorescent probes for real-time measurement of nitric oxide in living cells. Analyst 140(21):7129–7141. http://sci-hub.tw/10.1039/C5AN01628B

    Article  CAS  PubMed  Google Scholar 

  11. Domaille DW, Que EL, Chang CJ (2008) Synthetic fluorescent sensors for studying the cell biology of metals. Nat Chem Biol 4(3):168–175. http://sci-hub.tw/10.1038/nchembio.69

    Article  CAS  PubMed  Google Scholar 

  12. Rogers JK, Church GM (2016) Genetically encoded sensors enable real-time observation of metabolite production. Proc Natl Acad Sci U S A 113(9):2388–2393. http://sci-hub.tw/10.1073/pnas.1600375113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544. http://sci-hub.tw/10.1146/annurev.biochem.67.1.509

    Article  CAS  PubMed  Google Scholar 

  14. Oldach L, Zhang J (2014) Genetically encoded fluorescent biosensors for live-cell visualization of protein phosphorylation. Chem Biol 21(2):186–197. http://sci-hub.tw/10.1016/j.chembiol.2013.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Waldeck-Weiermair M, Bischof H, Blass S et al (2015) Generation of red-shifted Cameleons for imaging Ca2+ dynamics of the endoplasmic reticulum. Sensors (Basel) 15(6):13052–13068. http://sci-hub.tw/10.3390/s150613052

    Article  CAS  Google Scholar 

  16. Hessels AM, Merkx M (2015) Genetically-encoded FRET-based sensors for monitoring Zn(2+) in living cells. Metallomics 7(2):258–266. http://sci-hub.tw/10.1039/c4mt00179f

    Article  CAS  PubMed  Google Scholar 

  17. Vishnu N, Jadoon Khan M, Karsten F et al (2014) ATP increases within the lumen of the endoplasmic reticulum upon intracellular Ca2+ release. Mol Biol Cell 25(3):368–379. http://sci-hub.tw/10.1091/mbc.E13-07-0433

    Article  PubMed  PubMed Central  Google Scholar 

  18. Waldeck-Weiermair M, Alam MR, Khan MJ et al (2012) Spatiotemporal correlations between cytosolic and mitochondrial Ca2+ signals using a novel red-shifted mitochondrial targeted cameleon. PLoS One 7(9):e45917. http://sci-hub.tw/10.1371/journal.pone.0045917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chiu WK, Towheed A, Palladino MJ (2014) Genetically encoded redox sensors. Methods Enzymol 542:263–287. http://sci-hub.tw/10.1016/B978-0-12-416618-9.00014-5

    Article  CAS  PubMed  Google Scholar 

  20. Eroglu E, Gottschalk B, Charoensin S et al (2016) Development of novel FP-based probes for live-cell imaging of nitric oxide dynamics. Nat Commun 7:10623. http://sci-hub.tw/10.1038/ncomms10623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Storace D, Rad MS, Han Z et al (2015) Genetically encoded protein sensors of membrane potential. Adv Exp Med Biol 859:493–509. http://sci-hub.tw/10.1007/978-3-319-17641-3_20

    Article  PubMed  Google Scholar 

  22. Deuschle K, Fehr M, Hilpert M et al (2005) Genetically encoded sensors for metabolites. Cytometry A 64(1):3–9. http://sci-hub.tw/10.1002/cyto.a.20119

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhao Y, Araki S, Wu J et al (2011) An expanded palette of genetically encoded Ca2+ indicators. Science 333(6051):1888–1891. http://sci-hub.tw/10.1126/science.1208592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lukyanov KA, Belousov VV (2014) Genetically encoded fluorescent redox sensors. Biochim Biophys Acta 1840(2):745–756. http://sci-hub.tw/10.1016/j.bbagen.2013.05.030

    Article  CAS  PubMed  Google Scholar 

  25. Taylor SC, Ferguson AD, Bergeron JJM et al (2004) The ER protein folding sensor UDP-glucose glycoprotein-glucosyltransferase modifies substrates distant to local changes in glycoprotein conformation. Nat Struct Mol Biol 11(2):128–134. http://sci-hub.tw/10.1038/nsmb715

    Article  CAS  PubMed  Google Scholar 

  26. Osibow K, Malli R, Kostner GM et al (2006) A new type of non-Ca2+-buffering Apo(a)-based fluorescent indicator for intraluminal Ca2+ in the endoplasmic reticulum. J Biol Chem 281(8):5017–5025. http://sci-hub.tw/10.1074/jbc.M508583200

    Article  CAS  PubMed  Google Scholar 

  27. Rosado CJ, Mijaljica D, Hatzinisiriou I et al (2008) Rosella: a fluorescent pH-biosensor for reporting vacuolar turnover of cytosol and organelles in yeast. Autophagy 4(2):205–213

    Article  CAS  PubMed  Google Scholar 

  28. Tang HL, Tang HM, Fung MC et al (2016) In vivo biosensor tracks non-apoptotic caspase activity in drosophila. J Vis Exp 117. http://sci-hub.tw/10.3791/53992

  29. Ivnitskii DM, Rishpon J (1993) Biosensor based on direct detection of membrane potential induced by immobilized hydrolytic enzymes. Anal Chim Acta 282(3):517–525. http://sci-hub.tw/10.1016/0003-2670(93)80115-2

    Article  CAS  Google Scholar 

  30. Germond A, Fujita H, Ichimura T et al (2016) Design and development of genetically encoded fluorescent sensors to monitor intracellular chemical and physical parameters. Biophys Rev 8:121–138. http://sci-hub.tw/10.1007/s12551-016-0195-9

    Article  CAS  PubMed Central  Google Scholar 

  31. Looger LL, Lalonde S, Frommer WB (2005) Genetically encoded FRET sensors for visualizing metabolites with subcellular resolution in living cells. Plant Physiol 138(2):555–557. http://sci-hub.tw/10.1104/pp.104.900151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Souslova EA, Chudakov DM (2007) Genetically encoded intracellular sensors based on fluorescent proteins. Biochemistry (Mosc) 72(7):683–697

    Article  CAS  Google Scholar 

  33. Raimondo JV, Joyce B, Kay L et al (2013) A genetically-encoded chloride and pH sensor for dissociating ion dynamics in the nervous system. Front Cell Neurosci 7:202. http://sci-hub.tw/10.3389/fncel.2013.00202

    Article  PubMed  PubMed Central  Google Scholar 

  34. Eroglu E, Rost R, Bischof H et al (2017) Application of genetically encoded fluorescent nitric oxide (NO•) probes, the geNOps, for real-time imaging of NO• signals in single cells. J Vis Exp 121:e55486. http://sci-hub.tw/10.3791/55486

    Google Scholar 

  35. Opelt M, Eroglu E, Waldeck-Weiermair M et al (2016) Formation of nitric oxide by aldehyde dehydrogenase-2 is necessary and sufficient for vascular bioactivation of nitroglycerin. J Biol Chem 291(46):24076–24084. http://sci-hub.tw/10.1074/jbc.M116.752071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Charoensin S, Eroglu E, Opelt M et al (2017) Intact mitochondrial Ca2+ uniport is essential for agonist-induced activation of endothelial nitric oxide synthase (eNOS). Free Radic Biol Med 102:248–259. http://sci-hub.tw/10.1016/j.freeradbiomed.2016.11.049

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the scientific advisory board of NGFI (Next Generation Fluorescence Imaging GmbH, Graz, Austria, http://www.ngfi.eu/) for their support.

Sources of Funding

This work is supported by Nikon Austria within the Nikon-Center of Excellence Graz. The researchers are also supported by the Ph.D. program Metabolic and Cardiovascular Disease (DK-W1226) of the Medical University of Graz, and also by the FWF project P 28529-B27. Microscopic equipment is part of the Nikon-Center of Excellence, Graz that is supported by the Austrian infrastructure program 2013/2014, Nikon Austria Inc., and BioTechMed, Graz.

Disclosure

E.E, M.W., R.M., and W.F.G., staff members of the Medical University of Graz, have filed a U.K. patent application (patent application number WO2015EP74877 20151027, priority number GB20140019073 20141027) that describe parts of the research in this manuscript. Licenses related to this patent are provided to Next Generation Fluorescence Imaging (NGFI) GmbH (http://www.ngfi.eu/), a spin-off company of the Medical University of Graz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Malli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Eroglu, E., Bischof, H., Charoensin, S., Waldeck-Weiermaier, M., Graier, W.F., Malli, R. (2018). Real-Time Imaging of Nitric Oxide Signals in Individual Cells Using geNOps. In: Mengel, A., Lindermayr, C. (eds) Nitric Oxide. Methods in Molecular Biology, vol 1747. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7695-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7695-9_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7694-2

  • Online ISBN: 978-1-4939-7695-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics