Skip to main content

Direct Measurement of S-Nitrosothiols with an Orbitrap Fusion Mass Spectrometer: S-Nitrosoglutathione Reductase as a Model Protein

  • Protocol
  • First Online:
Nitric Oxide

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1747))

  • 1024 Accesses

Abstract

Recent studies suggest cysteine S-nitrosation of S-nitrosoglutathione reductase (GSNOR) could regulate protein redox homeostasis. “Switch” assays enable discovery of putatively S-nitrosated proteins. However, with few exceptions, researchers have not examined the kinetics and biophysical consequences of S-nitrosation. Methods to quantify protein S-nitrosothiol (SNO) abundance and formation kinetics would bridge this mechanistic gap and allow interpretation of the consequences of specific modifications, as well as facilitate development of specific S-nitrosation inhibitors. Here, we describe a rapid assay to estimate protein SNO abundance with intact protein electrospray ionization mass spectrometry. Originally designed using recombinant GSNOR, these methods are applicable to any purified protein to test for or further study nitrosatable cysteines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith BC, Marletta MA (2012) Mechanisms of S-nitrosothiol formation and selectivity in nitric oxide signaling. Curr Opin Chem Biol 16(5–6):498–506. https://doi.org/10.1016/j.cbpa.2012.10.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Thibeault S, Rautureau Y, Oubaha M, Faubert D, Wilkes BC, Delisle C, Gratton JP (2010) S-nitrosylation of beta-catenin by eNOS-derived NO promotes VEGF-induced endothelial cell permeability. Mol Cell 39(3):468–476. https://doi.org/10.1016/j.molcel.2010.07.013

    Article  CAS  PubMed  Google Scholar 

  3. Lindermayr C, Sell S, Muller B, Leister D, Durner J (2010) Redox regulation of the NPR1-TGA1 system of Arabidopsis thaliana by nitric oxide. Plant Cell 22(8):2894–2907 https://doi.org/10.1105/tpc.109.066464

  4. Chouchani ET, Methner C, Nadtochiy SM, Logan A, Pell VR, Ding S, James AM, Cocheme HM, Reinhold J, Lilley KS, Partridge L, Fearnley IM, Robinson AJ, Hartley RC, Smith RAJ, Krieg T, Brookes PS, Murphy MP (2013) Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat Med 19(6):753–759. https://doi.org/10.1038/nm.3212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. He W, Frost MC (2016) Direct measurement of actual levels of nitric oxide (NO) in cell culture conditions using soluble NO donors. Redox Biol 9:1–14. https://doi.org/10.1016/j.redox.2016.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jaffrey SR, Snyder SH (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 2001(86):pl1. https://doi.org/10.1126/stke.2001.86.pl1

    CAS  PubMed  Google Scholar 

  7. Qu Z, Meng F, Bomgarden RD, Viner RI, Li J, Rogers JC, Cheng J, Greenlief CM, Cui J, Lubahn DB, Sun GY, Gu Z (2014) Proteomic quantification and site-mapping of S-nitrosylated proteins using isobaric iodoTMT reagents. J Proteome Res 13(7):3200–3211. https://doi.org/10.1021/pr401179v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137(3):921–930. https://doi.org/10.1104/pp.104.058719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hu J, Huang X, Chen L, Sun X, Lu C, Zhang L, Wang Y, Zuo J (2015) Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in Arabidopsis. Plant Physiol 167(4):1731–1746. https://doi.org/10.1104/pp.15.00026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nicolas F, Wu C, Bukhari S, de Toledo SM, Li H, Shibata M, Azzam EI (2015) S-nitrosylation in organs of mice exposed to low or high doses of gamma-rays: the modulating effect of iodine contrast agent at a low radiation dose. Proteomes 3(2):56–73. https://doi.org/10.3390/proteomes3020056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bajor M, Zaręba-Kozioł M, Zhukova L, Goryca K, Poznański J, Wysłouch-Cieszyńska A (2016) An interplay of S-nitrosylation and metal ion binding for astrocytic S100B protein. PLoS One 11(5):e0154822. https://doi.org/10.1371/journal.pone.0154822

    Article  PubMed  PubMed Central  Google Scholar 

  12. Balchin D, Stoychev SH, Dirr HW (2013) S-nitrosation destabilizes glutathione transferase P1-1. Biochemistry 52(51):9394–9402. https://doi.org/10.1021/bi401414c

    Article  CAS  PubMed  Google Scholar 

  13. Guerra D, Ballard K, Truebridge I, Vierling E (2016) S-nitrosation of conserved cysteines modulates activity and stability of S-nitrosoglutathione reductase (GSNOR). Biochemistry 55(17):2452–2464. https://doi.org/10.1021/acs.biochem.5b01373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ferranti P, Malorni A, Mamone G, Sannolo N, Marino G (1997) Characterisation of S-nitrosohaemoglobin by mass spectrometry. FEBS Lett 400(1):19–24

    Article  CAS  PubMed  Google Scholar 

  15. Juraschek R, Dülcks T, Karas M (1999) Nanoelectrospray—more than just a minimized-flow electrospray ionization source. J Am Soc Mass Spectrom 10(4):300–308. https://doi.org/10.1016/S1044-0305(98)00157-3

    Article  CAS  PubMed  Google Scholar 

  16. Zech B, Wilm M, van Eldik R, Brune B (1999) Mass spectrometric analysis of nitric oxide-modified caspase-3. J Biol Chem 274(30):20931–20936

    Article  CAS  PubMed  Google Scholar 

  17. Orbitrap fusion hardware manual 80000-97016 revision A (2015) Thermo Scientific

    Google Scholar 

  18. Xu S, Guerra D, Lee U, Vierling E (2013) S-nitrosoglutathione reductases are low-copy number, cysteine-rich proteins in plants that control multiple developmental and defense responses in Arabidopsis. Front Plant Sci 4:430. https://doi.org/10.3389/fpls.2013.00430

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kumar V, Martin F, Hahn MG, Schaefer M, Stamler JS, Stasch J-P, van den Akker F (2013) Insights into BAY 60-2770 activation and S-nitrosylation-dependent desensitization of soluble guanylyl cyclase via crystal structures of homologous Nostoc H-NOX domain complexes. Biochemistry 52(20):3601–3608. https://doi.org/10.1021/bi301657w

    Article  CAS  PubMed  Google Scholar 

  20. Weaver R, Riley RJ (2006) Identification and reduction of ion suppression effects on pharmacokinetic parameters by polyethylene glycol 400. Rapid Commun Mass Spectrom 20(17):2559–2564. https://doi.org/10.1002/rcm.2629

    Article  CAS  PubMed  Google Scholar 

  21. Borgerding MF, Hinze WL (1985) Characterization and evaluation of the use of nonionic polyoxyethylene(23)dodecanol micellar mobile phases in reversed-phase high-performance liquid chromatography. Anal Chem 57(12):2183–2190. https://doi.org/10.1021/ac00289a004

    Article  CAS  Google Scholar 

  22. Controlling contamination in ultra performance LC®/MS and HPLC/MS systems 715001307, Rev. D (2006) Waters

    Google Scholar 

  23. Hopper JTS, Oldham NJ (2011) Alkali metal cation-induced destabilization of gas-phase protein–ligand complexes: consequences and prevention. Anal Chem 83(19):7472–7479. https://doi.org/10.1021/ac201686f

    Article  CAS  PubMed  Google Scholar 

  24. Protein deconvolution 3.0 user guide XCALI-97576 revision A (2014) Thermo Scientific

    Google Scholar 

  25. Malakhov MP, Mattern MR, Malakhova OA, Drinker M, Weeks SD, Butt TR (2004) SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J Struct Funct Genom 5(1–2):75–86. https://doi.org/10.1023/b:jsfg.0000029237.70316.52

    Article  CAS  Google Scholar 

  26. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  27. Cech NB, Enke CG (2001) Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom Rev 20(6):362–387. https://doi.org/10.1002/mas.10008

    Article  CAS  PubMed  Google Scholar 

  28. Geoghegan KF, Dixon HB, Rosner PJ, Hoth LR, Lanzetti AJ, Borzilleri KA, Marr ES, Pezzullo LH, Martin LB, LeMotte PK, McColl AS, Kamath AV, Stroh JG (1999) Spontaneous alpha-N-6-phosphogluconoylation of a “his tag” in Escherichia coli: the cause of extra mass of 258 or 178 da in fusion proteins. Anal Biochem 267(1):169–184. https://doi.org/10.1006/abio.1998.2990

Download references

Acknowledgment

Mass spectral data were obtained at the University of Massachusetts Amherst Mass Spectrometry Core Facility. This work was supported by a Massachusetts Life Sciences Center new faculty award (E.V.), a grant from the National Science Foundation (MCB1517046 to E.V., which funded D.G., I.T., and P.T.), and the National Institutes of Health (S10OD010645 to S.J.E.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Vierling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Guerra, D., Truebridge, I., Eyles, S.J., Treffon, P., Vierling, E. (2018). Direct Measurement of S-Nitrosothiols with an Orbitrap Fusion Mass Spectrometer: S-Nitrosoglutathione Reductase as a Model Protein. In: Mengel, A., Lindermayr, C. (eds) Nitric Oxide. Methods in Molecular Biology, vol 1747. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7695-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7695-9_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7694-2

  • Online ISBN: 978-1-4939-7695-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics