Nitric Oxide pp 143-160 | Cite as

Direct Measurement of S-Nitrosothiols with an Orbitrap Fusion Mass Spectrometer: S-Nitrosoglutathione Reductase as a Model Protein

  • Damian Guerra
  • Ian Truebridge
  • Stephen J. Eyles
  • Patrick Treffon
  • Elizabeth VierlingEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1747)


Recent studies suggest cysteine S-nitrosation of S-nitrosoglutathione reductase (GSNOR) could regulate protein redox homeostasis. “Switch” assays enable discovery of putatively S-nitrosated proteins. However, with few exceptions, researchers have not examined the kinetics and biophysical consequences of S-nitrosation. Methods to quantify protein S-nitrosothiol (SNO) abundance and formation kinetics would bridge this mechanistic gap and allow interpretation of the consequences of specific modifications, as well as facilitate development of specific S-nitrosation inhibitors. Here, we describe a rapid assay to estimate protein SNO abundance with intact protein electrospray ionization mass spectrometry. Originally designed using recombinant GSNOR, these methods are applicable to any purified protein to test for or further study nitrosatable cysteines.

Key words

S-nitrosation S-nitrosothiol (SNO) GSNOR Mass spectrometry Orbitrap fusion Redox switch Cysteine modification 



Mass spectral data were obtained at the University of Massachusetts Amherst Mass Spectrometry Core Facility. This work was supported by a Massachusetts Life Sciences Center new faculty award (E.V.), a grant from the National Science Foundation (MCB1517046 to E.V., which funded D.G., I.T., and P.T.), and the National Institutes of Health (S10OD010645 to S.J.E.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


  1. 1.
    Smith BC, Marletta MA (2012) Mechanisms of S-nitrosothiol formation and selectivity in nitric oxide signaling. Curr Opin Chem Biol 16(5–6):498–506. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Thibeault S, Rautureau Y, Oubaha M, Faubert D, Wilkes BC, Delisle C, Gratton JP (2010) S-nitrosylation of beta-catenin by eNOS-derived NO promotes VEGF-induced endothelial cell permeability. Mol Cell 39(3):468–476. CrossRefPubMedGoogle Scholar
  3. 3.
    Lindermayr C, Sell S, Muller B, Leister D, Durner J (2010) Redox regulation of the NPR1-TGA1 system of Arabidopsis thaliana by nitric oxide. Plant Cell 22(8):2894–2907
  4. 4.
    Chouchani ET, Methner C, Nadtochiy SM, Logan A, Pell VR, Ding S, James AM, Cocheme HM, Reinhold J, Lilley KS, Partridge L, Fearnley IM, Robinson AJ, Hartley RC, Smith RAJ, Krieg T, Brookes PS, Murphy MP (2013) Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat Med 19(6):753–759. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    He W, Frost MC (2016) Direct measurement of actual levels of nitric oxide (NO) in cell culture conditions using soluble NO donors. Redox Biol 9:1–14. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Jaffrey SR, Snyder SH (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 2001(86):pl1. PubMedGoogle Scholar
  7. 7.
    Qu Z, Meng F, Bomgarden RD, Viner RI, Li J, Rogers JC, Cheng J, Greenlief CM, Cui J, Lubahn DB, Sun GY, Gu Z (2014) Proteomic quantification and site-mapping of S-nitrosylated proteins using isobaric iodoTMT reagents. J Proteome Res 13(7):3200–3211. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137(3):921–930. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hu J, Huang X, Chen L, Sun X, Lu C, Zhang L, Wang Y, Zuo J (2015) Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in Arabidopsis. Plant Physiol 167(4):1731–1746. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Nicolas F, Wu C, Bukhari S, de Toledo SM, Li H, Shibata M, Azzam EI (2015) S-nitrosylation in organs of mice exposed to low or high doses of gamma-rays: the modulating effect of iodine contrast agent at a low radiation dose. Proteomes 3(2):56–73. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bajor M, Zaręba-Kozioł M, Zhukova L, Goryca K, Poznański J, Wysłouch-Cieszyńska A (2016) An interplay of S-nitrosylation and metal ion binding for astrocytic S100B protein. PLoS One 11(5):e0154822. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Balchin D, Stoychev SH, Dirr HW (2013) S-nitrosation destabilizes glutathione transferase P1-1. Biochemistry 52(51):9394–9402. CrossRefPubMedGoogle Scholar
  13. 13.
    Guerra D, Ballard K, Truebridge I, Vierling E (2016) S-nitrosation of conserved cysteines modulates activity and stability of S-nitrosoglutathione reductase (GSNOR). Biochemistry 55(17):2452–2464. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ferranti P, Malorni A, Mamone G, Sannolo N, Marino G (1997) Characterisation of S-nitrosohaemoglobin by mass spectrometry. FEBS Lett 400(1):19–24CrossRefPubMedGoogle Scholar
  15. 15.
    Juraschek R, Dülcks T, Karas M (1999) Nanoelectrospray—more than just a minimized-flow electrospray ionization source. J Am Soc Mass Spectrom 10(4):300–308. CrossRefPubMedGoogle Scholar
  16. 16.
    Zech B, Wilm M, van Eldik R, Brune B (1999) Mass spectrometric analysis of nitric oxide-modified caspase-3. J Biol Chem 274(30):20931–20936CrossRefPubMedGoogle Scholar
  17. 17.
    Orbitrap fusion hardware manual 80000-97016 revision A (2015) Thermo ScientificGoogle Scholar
  18. 18.
    Xu S, Guerra D, Lee U, Vierling E (2013) S-nitrosoglutathione reductases are low-copy number, cysteine-rich proteins in plants that control multiple developmental and defense responses in Arabidopsis. Front Plant Sci 4:430. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kumar V, Martin F, Hahn MG, Schaefer M, Stamler JS, Stasch J-P, van den Akker F (2013) Insights into BAY 60-2770 activation and S-nitrosylation-dependent desensitization of soluble guanylyl cyclase via crystal structures of homologous Nostoc H-NOX domain complexes. Biochemistry 52(20):3601–3608. CrossRefPubMedGoogle Scholar
  20. 20.
    Weaver R, Riley RJ (2006) Identification and reduction of ion suppression effects on pharmacokinetic parameters by polyethylene glycol 400. Rapid Commun Mass Spectrom 20(17):2559–2564. CrossRefPubMedGoogle Scholar
  21. 21.
    Borgerding MF, Hinze WL (1985) Characterization and evaluation of the use of nonionic polyoxyethylene(23)dodecanol micellar mobile phases in reversed-phase high-performance liquid chromatography. Anal Chem 57(12):2183–2190. CrossRefGoogle Scholar
  22. 22.
    Controlling contamination in ultra performance LC®/MS and HPLC/MS systems 715001307, Rev. D (2006) WatersGoogle Scholar
  23. 23.
    Hopper JTS, Oldham NJ (2011) Alkali metal cation-induced destabilization of gas-phase protein–ligand complexes: consequences and prevention. Anal Chem 83(19):7472–7479. CrossRefPubMedGoogle Scholar
  24. 24.
    Protein deconvolution 3.0 user guide XCALI-97576 revision A (2014) Thermo ScientificGoogle Scholar
  25. 25.
    Malakhov MP, Mattern MR, Malakhova OA, Drinker M, Weeks SD, Butt TR (2004) SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J Struct Funct Genom 5(1–2):75–86. CrossRefGoogle Scholar
  26. 26.
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. CrossRefPubMedGoogle Scholar
  27. 27.
    Cech NB, Enke CG (2001) Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom Rev 20(6):362–387. CrossRefPubMedGoogle Scholar
  28. 28.
    Geoghegan KF, Dixon HB, Rosner PJ, Hoth LR, Lanzetti AJ, Borzilleri KA, Marr ES, Pezzullo LH, Martin LB, LeMotte PK, McColl AS, Kamath AV, Stroh JG (1999) Spontaneous alpha-N-6-phosphogluconoylation of a “his tag” in Escherichia coli: the cause of extra mass of 258 or 178 da in fusion proteins. Anal Biochem 267(1):169–184.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Damian Guerra
    • 1
    • 2
  • Ian Truebridge
    • 1
  • Stephen J. Eyles
    • 1
  • Patrick Treffon
    • 1
  • Elizabeth Vierling
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstUSA
  2. 2.Department of Obstetrics and GynecologyUniversity of ColoradoAuroraUSA

Personalised recommendations