Advertisement

A Simple and Useful Method to Apply Exogenous NO Gas to Plant Systems: Bell Pepper Fruits as a Model

  • José M. PalmaEmail author
  • Carmelo Ruiz
  • Francisco J. Corpas
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1747)

Abstract

Nitric oxide (NO) is involved many physiological plant processes, including germination, growth and development of roots, flower setting and development, senescence, and fruit ripening. In the latter physiological process, NO has been reported to play an opposite role to ethylene. Thus, treatment of fruits with NO may lead to delay ripening independently of whether they are climacteric or nonclimacteric. In many cases different methods have been reported to apply NO to plant systems involving sodium nitroprusside, NONOates, DETANO, or GSNO to investigate physiological and molecular consequences. In this chapter a method to treat plant materials with NO is provided using bell pepper fruits as a model. This method is cheap, free of side effects, and easy to apply since it only requires common chemicals and tools available in any biology laboratory.

Key words

Nitric oxide gas Pepper fruits Ripening Nitric oxide fumigation 

Notes

Acknowledgment

This work was financed by the Ministry of Economy and Competitiveness (Grant AGL2015-65104-P).

References

  1. 1.
    Klie S, Osorio S, Tohge T, Drincovich MF, Fait A, Giovannoni JJ, Fernie AR, Nikoloski Z (2014) Conserved changes in the dynamics of metabolic processes during fruit development and ripening across species. Plant Physiol 164:55–68CrossRefPubMedGoogle Scholar
  2. 2.
    Palma JM, Sevilla F, Jiménez A, del Río LA, Corpas FJ, Álvarez de Morales P, Camejo DM (2015) Physiology of pepper fruit and the metabolism of antioxidants: Chloroplasts, mitochondria and peroxisomes. Ann Bot 116:627–636CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Howard LR, Talcott ST, Brenes CH, Villalon B (2000) Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity. J Agric Food Chem 48:1713–1720CrossRefPubMedGoogle Scholar
  4. 4.
    Mateos RM, Jiménez A, Román P, Romojaro F, Bacarizo S, Leterrier M, Gómez M, Sevilla F, del Río LA, Corpas FJ, Palma JM (2013) Antioxidant systems from pepper (Capsicum annuum L.): involvement in the response to temperature changes in ripe fruits. Int J Mol Sci 14:9556–9580CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Beligni MV, Fath A, Bethke PC, Lamattina L, Jones RL (2002) Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiol 129:1642–1650CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Corpas FJ, del Río LA, Barroso JB (2007) Need of biomarkers of nitrosative stress in plants. Trends Plant Sci 12:436–438CrossRefPubMedGoogle Scholar
  7. 7.
    Fernández-Marcos M, Sanz L, Lewis DR, Muday GK, Lorenzo O (2011) Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport. Proc Natl Acad Sci U S A 108:18506–18511CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kwon E, Feechan A, Yun BW, Hwang BH, Pallas JA, Kang JG, Loake GJ (2012) AtGSNOR1 function is required for multiple developmental programs in Arabidopsis. Planta 236:887–900CrossRefPubMedGoogle Scholar
  9. 9.
    Yu M, Lamattina L, Spoel SH, Loake GJ (2014) Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytol 202:1142–1156CrossRefPubMedGoogle Scholar
  10. 10.
    He Y, Tang RH, Hao Y, Stevens RD, Cook CW, Ahn SM, Jing L, Yang Z, Chen L, Guo F, Fiorani F, Jackson RB, Crawford NM, Pei ZM (2004) Nitric oxide represses the Arabidopsis floral transition. Science 305:1968–1971Google Scholar
  11. 11.
    Lee U, Wie C, Fernandez BO, Feelisch M, Vierling E (2008) Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis. Plant Cell 20:786–802Google Scholar
  12. 12.
    Corpas FJ, Barroso JB, Carreras A, Quirós M, León AM, Romero-Puertas MC, Esteban F, Valderrama R, Palma JM, Sandalio LM, Gómez M, del Río LA (2004) Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiol 136:2722–2733CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Corpas FJ, Barroso JB, Carreras A, Valderrama R, Palma JM, León AM, Sandalio LM, del Río LA (2006) Constitutive arginine dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta 224:246–254CrossRefPubMedGoogle Scholar
  14. 14.
    Prochazkova D, Wilhelmova N (2011) Nitric oxide, reactive nitrogen species and associated enzymes during plant senescence. Nitric Oxide 24:61–65CrossRefPubMedGoogle Scholar
  15. 15.
    Begara-Morales JC, Chaki M, Sánchez-Calvo B, Mata-Pérez C, Leterrier M, Palma JM, Barroso JB, Corpas FJ (2013) Protein tyrosine nitration in pea roots during development and senescence. J Exp Bot 64:1121–1134CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Khan MN, Mobin M, Mohammad F, Corpas FJ (2014) Nitric oxide in plants: metabolism and role in stress physiology. Springer, Heidelberg, GermanyCrossRefGoogle Scholar
  17. 17.
    Leshem YY (2000) Nitric oxide in plants: occurrence, function and use. Kluwer Academic Publishers, Dordrecht, The NetherlandsCrossRefGoogle Scholar
  18. 18.
    Leshem YY, Haramaty E (1996) The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn. foliage. J Plant Physiol 148:258–263CrossRefGoogle Scholar
  19. 19.
    Leshem YY, Pinchasov Y (2000) Non-invasive photoacoustic spectroscopic determination of relative endogenous nitric oxide and ethylene content stoichiometry during the ripening of strawberries Fragaria anannasa (Duch.) and avocados Persea americana (Mill.) J Exp Bot 51:1471–1473PubMedGoogle Scholar
  20. 20.
    Wills RB, Soegiarto L, Bowyer MC (2007) Use of a solid mixture containing diethylenetriamine/nitric oxide (DETANO) to liberate nitric oxide gas in the presence of horticultural produce to extend postharvest life. Nitric Oxide 17:44–49CrossRefPubMedGoogle Scholar
  21. 21.
    Lindermayr C, Saalbach G, Bahnweg G, Durner J (2006) Differential inhibition of Arabidopsis methionine adenosyltransferases by protein S-nitrosylation. J Biol Chem 281:4285–4291CrossRefPubMedGoogle Scholar
  22. 22.
    Corpas FJ, Palma JM, del Río LA, Barroso JB (2016) Nitric oxide emission and uptake from higher plants. In: Lamattina L, García-Mata C (eds) Gasotransmitters in plants, signaling and communication in plants. Springer International Publishing, Switzerland, pp 79–93Google Scholar
  23. 23.
    León J, Costa Á, Castillo MC (2016) Nitric oxide triggers a transient metabolic reprogramming in Arabidopsis. Sci Rep 6:37945Google Scholar
  24. 24.
    Melo NK, Bianchetti RE, Lira BS, Oliveira PM, Zuccarelli R, Dias DL, Demarco D, Peres LE, Rossi M, Freschi L (2016) Nitric oxide, ethylene, and auxin cross talk mediates greening and plastid development in deetiolating tomato seedlings. Plant Physiol 170:2278–2294CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kasten D, Durner J, Gaupels F (2017) Gas alert: the NO2 pitfall during NO fumigation of plants. Front Plant Sci 8:85CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chaki M, Álvarez de Morales P, Ruiz C, Begara-Morales JC, Barroso JB, Corpas FJ, Palma JM (2015) Ripening of pepper (Capsicum annuum) fruit is characterized by an enhancement of protein tyrosine nitration. Ann Bot 116:637–647CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Rodríguez-Ruiz M, Mioto P, Palma JM, Corpas FJ (2017) S-nitrosoglutathione reductase (GSNOR) activity is down-regulated during pepper (Capsicum annuum L.) fruit ripening. Nitric Oxide 68:51–55Google Scholar
  28. 28.
    Rodríguez-Ruiz M, Mateos RM, Codesido V, Corpas FJ, Palma JM (2017) Characterization of the galactono-1,4-lactone dehydrogenase from pepper fruits and its modulation in the ascorbate biosynthesis. Role of nitric oxide. Redox Biol 12:171–181CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • José M. Palma
    • 1
    Email author
  • Carmelo Ruiz
    • 1
  • Francisco J. Corpas
    • 1
  1. 1.Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of PlantsEstación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranadaSpain

Personalised recommendations