Skip to main content

Host-Associated Bacteriophage Isolation and Preparation for Viral Metagenomics

  • Protocol
  • First Online:
Viral Metagenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1746))

Abstract

Prokaryotic viruses, or bacteriophages, are viruses that infect bacteria and archaea. These viruses have been known to associate with host systems for decades, yet only recently have their influence on the regulation of host-associated bacteria been appreciated. These studies have been conducted in many host systems, from the base of animal life in the Cnidarian phylum to mammals. These prokaryotic viruses are useful for regulating the number of bacteria in a host ecosystem and for regulating the strains of bacteria useful for the microbiome. These viruses are likely selected by the host to maintain bacterial populations. Viral metagenomics allows researchers to profile the communities of viruses associating with animal hosts, and importantly helps to determine the functional role these viruses play. Further, viral metagenomics show the sphere of viral involvement in gene flow and gene shuffling in an ever-changing host environment. The influence of prokaryotic viruses could, therefore, have a clear impact on host health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grasis JA, Lachnit T, Anton-Erxleben F, Lim YM, Schmieder R, Fraune S et al (2014) Species-specific viromes in the ancestral holobiont hydra. PLoS One 9:e109952. https://doi.org/10.1371/journal.pone.0109952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Duerkop BA, Clements CV, Rollins D, Rodrigues JL, Hooper LV (2012) A composite bacteriophage alters colonization by an intestinal commensal bacterium. Proc Natl Acad Sci U S A 109:17621–17626. https://doi.org/10.1073/pnas.1206136109

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cadwell K (2015) The virome in host health and disease. Immunity 42:805–813. https://doi.org/10.1016/j.immuni.2015.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Daly GM et al (2011) A viral discovery methodology for clinical biopsy samples utilizing massively parallel next generation sequencing. PLoS One 6:e28879. https://doi.org/10.1371/journal.pone.0028879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hall RJ et al (2014) Evaluation of rapid and simple techniques for the enrichment of viruses prior to metagenomic virus discovery. J Virol Meth 195:194–204. https://doi.org/10.1016/j.jviromet.2013.08.035

    Article  CAS  Google Scholar 

  6. Kleiner M et al (2015) Evaluation of methods to purify virus-like particles for metagenomic sequencing of intestinal viromes. BMC Genomics 16:7. https://doi.org/10.1186/s12864-014-1207-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ortmann AC, Suttle CA (2009) Determination of virus abundance by epifluorescence microscopy. In: Clokie MR, Kropinski AM (eds) Bacteriophages: methods and protocols, volume 1: isolation, characterization, and interactions, vol 501. Humana Press, New York, pp 87–95. https://doi.org/10.1007/978-1-60327-164-6_10

    Chapter  Google Scholar 

  8. Ackermann H-W, Heldal M (2010) Basic electron microscopy of aquatic viruses. In: Wilhelm SW, Weinbauer MG, Suttle CA (eds) Manual of aquatic viral ecology, vol 18. American Society of Limnology and Oceanography, Waco, TX, pp 182–192. https://doi.org/10.4319/mave.2010.978-0-09845591-0-7.182

    Chapter  Google Scholar 

  9. Ackermann H-W (2009) Basic phage electron microscopy. In: Clokie MR, Kropinski AM (eds) Bacteriophages: methods and protocols, volume 1: isolation, characterization, and interactions, vol 501. Humana Press, New York, pp 113–126. https://doi.org/10.1007/978-1-60327-164-6_12

    Chapter  Google Scholar 

  10. Lim YW et al (2014) Purifying the impure: sequencing metagenomes and metagenomes from complex animal-associated samples. J Vis Exp 94:e52117. https://doi.org/10.3791/52117

    Article  CAS  Google Scholar 

  11. Culley AI, Suttle CA, Steward GF (2010) Characterization of the diversity of marine RNA viruses. Manual of Aquatic Viral Ecol. 19:193–201. https://doi.org/10.4319/mave.2010.978-0-9845591-0-7.193

    Article  Google Scholar 

  12. Weynberg KD et al (2014) Generating viral metagenomes from the coral holobiont. Front Microbiol 5:1–11. https://doi.org/10.3389/fmicb.2014.00206

    Article  Google Scholar 

  13. Lawrence JE, Steward GF (2010) Purification of viruses by centrifugation. Manual of Aquatic Viral Ecol 17:166–181. https://doi.org/10.4319/mave.2010.978-0-9845591-0-7.166

    Article  Google Scholar 

  14. Summers WC (1999) Felix d’Herelle and the origins of molecular biology. Yale University Press, USA, p 248

    Google Scholar 

  15. Williamson KE et al (2003) Sampling natural viral communities from soil for culture-independent analyses. Appl Environ Micro 69:6628–6633. https://doi.org/10.1128/AEM.69.11.6628-6633.2003

    Article  CAS  Google Scholar 

  16. Hjelmso MH et al (2017) Evaluation of methods for the concentration and extraction of viruses from sewage in the context of metagenomic sequencing. PLoS One 12:e0170199. https://doi.org/10.1371/journal.pone.0170199

    Article  PubMed  PubMed Central  Google Scholar 

  17. Forterre P, Soler N, Krupovic M, Marguet E, Ackermann H-W (2013) Fake virus particles generated by fluorescence microscopy. Trends Microbiol 21:1–5. https://doi.org/10.1016/j.tim.2012.10.005

    Article  CAS  PubMed  Google Scholar 

  18. Solonenko SA et al (2013) Sequencing platform and library preparation choices impact viral metagenomes. BMC Genomics 14:320. https://doi.org/10.1186/1471-2164-14-320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Duhaime MB, Deng L, Poulos BT, Sullivan MB (2012) Towards quantitative metagenomics of wild viruses and other ultra-low concentration DNA samples: a rigorous assessment and optimization of the linker amplification method. Environ Microbiol 14:2526–2537. https://doi.org/10.1111/j.1462-2920.2012.02791.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant F32AI098418. Special thanks to Marisa Rojas for critical review of the protocol. The author declares no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juris A. Grasis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Grasis, J.A. (2018). Host-Associated Bacteriophage Isolation and Preparation for Viral Metagenomics. In: Pantaleo, V., Chiumenti, M. (eds) Viral Metagenomics. Methods in Molecular Biology, vol 1746. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7683-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7683-6_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7682-9

  • Online ISBN: 978-1-4939-7683-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics