Skip to main content

Heterogeneity of Metazoan Cells and Beyond: To Integrative Analysis of Cellular Populations at Single-Cell Level

  • Protocol
  • First Online:
Cellular Heterogeneity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1745))

Abstract

In this paper, we review some of the recent advances in cellular heterogeneity and single-cell analysis methods. In modern research of cellular heterogeneity, there are four major approaches: analysis of pooled samples, single-cell analysis, high-throughput single-cell analysis, and lately integrated analysis of cellular population at a single-cell level. Recently developed high-throughput single-cell genetic analysis methods such as RNA-Seq require purification step and destruction of an analyzed cell often are providing a snapshot of the investigated cell without spatiotemporal context. Correlative analysis of multiparameter morphological, functional, and molecular information is important for differentiation of more uniform groups in the spectrum of different cell types. Simplified distributions (histograms and 2D plots) can underrepresent biologically significant subpopulations. Future directions may include the development of nondestructive methods for dissecting molecular events in intact cells, simultaneous correlative cellular analysis of phenotypic and molecular features by hybrid technologies such as imaging flow cytometry, and further progress in supervised and non-supervised statistical analysis algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spudich JL, Koshland DE Jr (1976) Non-genetic individuality: chance in the single cell. Nature 262:467–471

    Article  CAS  PubMed  Google Scholar 

  2. Shackney SE, Shankey TV (1995) Genetic and phenotypic heterogeneity of human malignancies: finding order in chaos. Cytometry 21:2–5

    Article  CAS  PubMed  Google Scholar 

  3. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305:1622–1625

    Article  CAS  PubMed  Google Scholar 

  4. Niepel M, Spencer SL, Sorger PK (2009) Non-genetic cell-to-cell variability and the consequences for pharmacology. Curr Opin Chem Biol 13(56):556–561. https://doi.org/10.1016/j.cbpa.2009.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cotari JW, Voisinne G, Dar OE, Karabacak V, Altan-Bonnet G (2013) Cell-to-cell variability analysis dissects the plasticity of signaling of common gamma chain cytokines in T cells. Sci Signal 6(266):ra17. https://doi.org/10.1126/scisignal.2003240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Huang S (2009) Non-genetic heterogeneity of cells in development: more than just noise. Development 136:3853–3862. https://doi.org/10.1242/dev.035139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vorobjev IA, Barteneva NS (2016) Quantitative functional morphology by imaging flow cytometry. Methods Mol Biol 1389:3–11. https://doi.org/10.1007/978-1-4939-3302-0_1

    Article  PubMed  Google Scholar 

  8. Becskei A, Seraphin B, Serrano L (2001) Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J 20:2528–2535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dubnau D, Losick R (2006) Bistability in bacteria. Mol Microbiol 61:564–572

    Article  CAS  PubMed  Google Scholar 

  10. Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    Article  CAS  PubMed  Google Scholar 

  11. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391. https://doi.org/10.1038/nature00935

    Article  CAS  PubMed  Google Scholar 

  12. Kemmeren P, Sameith K, van de Pasch LA, Benschop JJ, Lenstra TL, Margaritis T et al (2014) Large-scale genetic perturbations reveal regulatory networks and an abundance of gene-specific repressors. Cell 157:740–752. https://doi.org/10.1016/j.cell.2014.02.054

    Article  CAS  PubMed  Google Scholar 

  13. Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M et al (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:231–237. https://doi.org/10.1038/nature01278

    Article  CAS  PubMed  Google Scholar 

  14. Kobayashi T, Mizuno H, Imayoshi I, Furusawa C, Shirahige K, Kageyama R (2009) The cyclic gene Hes1 contributes to diverse differentiation responses of embryonic stem cells. Genes Dev 23:1870–1875. https://doi.org/10.1101/gad.1823109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wagner A (2000) Robustness against mutations in genetic networks of yeast. Nat Genet 24:355–361. https://doi.org/10.1038/74174.

    Article  CAS  PubMed  Google Scholar 

  16. Ihmels J, Collins SR, Schuldiner M, Krogan NJ, Weissman JS (2007) Backup without redundancy: genetic interactions reveal the cost of duplicate gene loss. Mol Syst Biol 3:86. https://doi.org/10.1038/msb4100127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Hsiao TL, Vitkup D (2008) Role of duplicate genes in robustness against deleterious human mutations. PLoS Genet 4:e1000014. https://doi.org/10.1371/journal.pgen.1000014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Plata G, Vitkup D (2014) Genetic robustness and functional evolution of gene duplicates. Nucleic Acids Res 42:2405–2414. https://doi.org/10.1093/nar/gkt1200

    Article  CAS  PubMed  Google Scholar 

  19. Liao BY, Zhang J (2007) Mouse duplicate genes are as essential as singletons. Trends Genet 23(8):378–381

    Article  CAS  PubMed  Google Scholar 

  20. Su Z, Wang J, Gu X (2014) Effect of duplicate genes on mouse genetic robustness: an update. Biomed Res Int 2014:758672

    PubMed  PubMed Central  Google Scholar 

  21. Papp B, Pal C, Hurst LD (2004) Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. Nature 429:661–664. https://doi.org/10.1038/nature02636

    Article  CAS  PubMed  Google Scholar 

  22. Amini S, Holstege FC, Kemmeren P (2017) Growth condition dependency is the major cause of non-responsiveness upon genetic perturbation. PLoS One 12(3):e0173432. https://doi.org/10.1371/journal.pone.0173432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Jo J, Kang H, Choi MY, Koh DS (2005) How noise and coupling induce bursting action potentials in pancreatic beta-cells. Biophys J 89(3):1534–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dar RD, Hosmane NN, Arkin MR, Siliciano RF, Weinberger LS (2014) Screening for noise in gene expression identifies drug synergies. Science 344:1392–1396. https://doi.org/10.1126/science.125022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bahar R, Hartmann CH, Rodriguez KA, Denny AD, Busuttil RA, Dollé ME et al (2006) Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature 441:1011–1014. https://doi.org/10.1038/nature04844

    Article  CAS  PubMed  Google Scholar 

  26. Raser JM, O’Shea EK (2004) Control of stochasticity in eukaryotic gene expression. Science 304:1811–1814. https://doi.org/10.1126/science.1098641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guantes R, Diaz-Colunga J, Iborra FJ (2015) Mitochondria and the non-genetic origins of cell-to-cell variability: more is different. BioEssays 38:64–76. https://doi.org/10.1002/bies.201500082

    Article  PubMed  Google Scholar 

  28. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297:1183–1186. https://doi.org/10.1126/science.1070919

    Article  CAS  PubMed  Google Scholar 

  29. Altschuler SJ, Wu LF (2010) Cellular heterogeneity: do differences make a difference? Cell 141:559–563. https://doi.org/10.1016/j.cell.2010.04.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chattwood A, Thompson CRL (2011) Non-genetic heterogeneity and cell fate choice in Dictostelium discoideum. Dev Growth Diff 53:558–566

    Article  CAS  Google Scholar 

  31. Sieburg HB, Cho RH, Dykstra B, Uchida N, Eaves CJ, Muller-Sieburg CE (2006) The hematopoietic stem compartment consists of a limited number of discrete stem cell subsets. Blood 107:2311–2316. https://doi.org/10.1182/blood-2005-07-2970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Miller PH, Knapp DJ, Eaves CJ (2013) Heterogeneity in hematopoietic stem cell populations: implications for transplantation. Curr Opin Hematol 20:257–264. https://doi.org/10.1097/MOH.0b013e328360aaf6

    Article  PubMed  Google Scholar 

  33. Wilson NK, Kent DG, Buettner F, Shehata M, Macaulay IC, Calero-Nieto FJ et al (2015) Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell 16:712–724. https://doi.org/10.1016/j.stem.2015.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Trṻb M, Barr TA, Morrison VL, Brown S, Caserta S, Rixon J, Ivans A, Gray D (2017) Heterogeneity of phenotype and function reflects the multistage development of T follicular helper cells. Front Immunol 8:489. https://doi.org/10.3389/fimmu.2017.00489

    Article  PubMed  PubMed Central  Google Scholar 

  35. Francesconi M, Lehner B (2014) The effects of genetic variation on gene expression dynamics during development. Nature 505:208–211. https://doi.org/10.1038/nature1277.

    Article  CAS  PubMed  Google Scholar 

  36. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:708–712

    Article  CAS  PubMed  Google Scholar 

  37. Cahoi JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Chrisopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278. https://doi.org/10.1523/JNEUROSCI.4178-07.2008

    Article  CAS  Google Scholar 

  38. Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, Le Manno G, Jureus A, Marques S, Munguba H, He L, Betsholtz C, Rolny C, Castelo-Branco G, Hierling-Leffler J, Linnarsson S (2015) Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347:1138–1142. https://doi.org/10.1126/science.aaa1934.

    Article  CAS  PubMed  Google Scholar 

  39. Barteneva NS, Ketman K, Fasler-Kan E, Potashnikova D, Vorobjev IA (2013) Cell sorting in cancer research-diminishing degree of cell heterogeneity. Biochem Biophys Acta 1836:105–122. https://doi.org/10.1016/j.bbcan.2013.02.004

    CAS  PubMed  Google Scholar 

  40. Masgrau R, Guaza C, Ransohoff RM, Galea E (2017) Should we stop saying ‘glia’ and ‘neuroinflammation’. Trends Mol Med 23(6):486–500. https://doi.org/10.1016/j.molmed.2017.04.005

    Article  CAS  PubMed  Google Scholar 

  41. Darmanis S, Sloan SA, Zhang Y, Enge M, Caneda C, Shuer LM, Hayden Gephart MG, Barres BA, Quake SR (2015) A survey of human brain transcriptome diversity at the single cell level. Proc Natl Acad Sci U S A 112:7285–7290. https://doi.org/10.1073/pnas.1507125112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Darmanis S, Gallant CJ, Marinescu VD, Niklasson M, Segerman A, Flamourakis G, Fredriksson S, Assarsson E, Lundberg M, Nelander S, Westermark B, Landegren U (2016) Simultaneous multiplexed measurement of RNA and proteins in single cells. Cell Rep 14:380–389. https://doi.org/10.1016/j.celrep.2015.12.021

    Article  CAS  PubMed  Google Scholar 

  43. See K, Tan WLW, Lim EH, Tiang Z, Lee LT et al (2017) Single cardiomyocyte nuclear transcriptomes reveal a lincRNA-regulated de-differentiation and cell cycle stress-response in vivo. Nat Commun 8:225. https://doi.org/10.1038/s41467-017-00319-8

    Article  PubMed  PubMed Central  Google Scholar 

  44. Macosco EZ, Basu A, Satija R, Nemesh J, Shekhar K et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–1214. https://doi.org/10.1016/j.cell.2015.05.002

    Article  CAS  Google Scholar 

  45. Tasic B, Menon V, Nguen TN, Kim TK, Jarsky T, Yao Z et al (2016) Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat Neurosci 19:335–346. https://doi.org/10.1038/nn.4216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT et al (2013) Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498:236–240. https://doi.org/10.1038/nature12172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bjorklund AK, Forkel M, Picelli S, Konya V, Theorell J, Friberg D et al (2016) The heterogeneity of human CD127+ innate lymphoid cells revealed by single-cell RNA sequencing. Nat Immunol 17:451–460. https://doi.org/10.1038/ni.3368

    Article  PubMed  CAS  Google Scholar 

  48. Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW et al (2010) Genome re-modelling in a basal-like breast cancer metastasis and xenograft. Nature 464:999–1005. https://doi.org/10.1038/nature08989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Polyak K (2014) Tumor heterogeneity confounds and illuminates: a case for Darwinian tumor evolution. Nat Med 20:344–346. https://doi.org/10.1038/nm.3518

    Article  CAS  PubMed  Google Scholar 

  50. Burrell RA, McGranahan N, Bartek J, Swanton C (2013) The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501:338–345. https://doi.org/10.1038/nature12625

    Article  CAS  PubMed  Google Scholar 

  51. Brock A, Chang H, Huang S (2009) Non-genetic heterogeneity-a mutation-independent driving force for the somatic evolution of tumours. Nat Rev Genet 10:336–342. https://doi.org/10.1038/nrg2556

    Article  CAS  PubMed  Google Scholar 

  52. Cohen AA, Geva-Zatorsky N, Eden E, Frenkel-Morgenstern M, Issaeva I, Sigal A, Milo R, Cohen-Saidon C, Liron Y, Kam Z et al (2008) Dynamic proteomics of individual cancer cells in response to a drug. Science 322:1511–1516. https://doi.org/10.1126/science.1160165

    Article  CAS  PubMed  Google Scholar 

  53. Spencer SL, Gaudet S, Albeck JG, Burke JM, Sorger PK (2009) Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459:428–432. https://doi.org/10.1038/nature08012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schiro PG, Zhao M, Kuo JS, Koehler KM, Sabath DE, Chiu DT (2012) Sensitive and high-throughput isolation of rare cells from peripheral blood with ensemble-decision aliquot ranking. Angew Chem Int Ed Engl 51:4618–4622. https://doi.org/10.1002/anie.201108695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Marrinucci D, Bethel K, Lazar D, Fischer J, Huynh E, Clark P, Bruce R, Nieva J, Kuhn P (2010) Cytomorphology of circulating colorectal tumor cells: a small case series. J Oncol 2010:861341. https://doi.org/10.1155/2010/861341

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jiang L, Chen H, Pinello L, Yuan G-C (2016) GiniClust: detecting rare cell types from single-cell expression data with Gini index. Genome Biol 17:144. https://doi.org/10.1186/s13059-016-1010-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Van den Bergh B, Fauvart M, Michiels J (2017) Formation, physiology, ecology, evolution and clinical importance of bacterial persisters. FEMS Microbiol Rev 41:219–251. https://doi.org/10.1093/femsre/fux001

    Article  PubMed  Google Scholar 

  58. Chen J, Li Y, T-S Y, McKay RM, Burns DK, Kernie SG, Parada LF (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488:522–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ramirez M, Rajaram S, Steininger RJ et al (2016) Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat Commun 7:10690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shaffer SM, Dunagin MC, Torborg SR, Torre EA, Emert B et al (2017) Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature 546:431–435. https://doi.org/10.1038/nature22794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Caicedo JC, Singh S, Carpenter AE (2016) Applications in image-based profiling of perturbations. Curr Opin Biotechnol 39:134–142. https://doi.org/10.1016/j.copbio.2016.04.003

    Article  CAS  PubMed  Google Scholar 

  62. Skylaki S, Hilsenbeck O, Schroeder T (2016) Challenges in long-term imaging and quantification of single-cell dynamics. Nat Biotechnol 34:1137–1144. https://doi.org/10.1038/nbt.3713

    Article  CAS  PubMed  Google Scholar 

  63. Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Yang JL, Ferrante TC et al (2014) Highly multiplexed subcellular RNA sequencing in situ. Science 343(6177):1360–1363. https://doi.org/10.1126/science.1250212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Ferrante TC, Terry R et al (2015) Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat Protoc 10(3):442–458. https://doi.org/10.1038/nprot.2014.191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Grindberg RV, Yee-Greenbaum JL, McConnell MJ, Novotny M, O’Shaughnessy AL, Lambert GM et al (2013) RNA-sequencing from single nuclei. Proc Natl Acad Sci U S A 110(49):19802–19807. https://doi.org/10.1073/pnas.1319700110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Alix-Panabieres C, Pantel K (2014) Technologies for detection of circulating tumor cells: facts and vision. Lab Chip 14:57–62. https://doi.org/10.1039/c3lc50644d

    Article  CAS  PubMed  Google Scholar 

  67. Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S (2008) Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453:544–547. https://doi.org/10.1038/nature06965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK, Arnaud M et al (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A 100:4678–4683. https://doi.org/10.1073/pnas.0730515100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hümmer D, Kurth F, Naredi-Rainer N, Dittrich PS (2016) Single cells in confined volumes: microchambers and microdroplets. Lab Chip 16:447–458. https://doi.org/10.1039/c5lc01314c

    Article  PubMed  CAS  Google Scholar 

  70. Zinchenko A, Devenish SRA, Kintses B, Colin P-Y, Fischlechner M, Hollfelder F (2014) One in a million: flow cytometric sorting of single cell-lysate assays in monodisperse picolitre double emulsion droplets for directed evolution. Anal Chem 86:2526–2533. https://doi.org/10.1021/ac403585p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhu Z, Zhang W, Leng X, Zhang M, Guan Z, Lu J, Yang CJ (2012) Highly sensitive and quantitative detection of rare pathogens through agarose droplet microfluidic emulsion PCR at the single-cell level. Lab Chip 12:3907–3913

    Article  CAS  PubMed  Google Scholar 

  72. Lang P, Yeow K, Nichols A, Scheer A (2006) Cellular imaging in drug discovery. Nat Rev Drug Discov 5:343–356

    Article  CAS  PubMed  Google Scholar 

  73. Shroeder T (2008) Imaging stem-cell-driven regeneration in mammals. Nature 453:345–351. https://doi.org/10.1038/nature07043

    Article  CAS  Google Scholar 

  74. Shroeder T (2011) Long-term single-cell imaging of mammalian stem cells. Nat Methods 8(4 Suppl):S30–S35. https://doi.org/10.1038/nmeth.1577

    Article  CAS  Google Scholar 

  75. Horwitz R (2016) Integrated, multi-scale, spatial-temporal cell biology—a next step in the post genomic era. Methods 96:3–5. https://doi.org/10.1016/j.ymeth.2015.09.007

    Article  CAS  PubMed  Google Scholar 

  76. Vorobjev I, Barteneva NS (2015) Temporal heterogeneity metrics in apoptosis induced by anticancer drugs. J Histochem Cytochem 63:494–510. https://doi.org/10.1369/0022155415583534

    Article  CAS  PubMed  Google Scholar 

  77. Serikbayeva A, Tvorogova A, Kauanova S, Vorobjev IA (2017) Analysis of microtubule dynamics heterogeneity in cell culture. In: Barteneva NS, Vorobjev IA (eds) Cellular heterogeneity: methods and protocols, Methods Mol Biol. Humana, New York

    Google Scholar 

  78. Basiji DA (2016) Principles of Amnis imaging flow cytometry. Methods Mol Biol 1389:13–21. https://doi.org/10.1007/978-1-4939-3302-0_2

    Article  PubMed  Google Scholar 

  79. Boland MV, Murphy RF (2001) A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinformatics 17:1213–1223

    Article  CAS  PubMed  Google Scholar 

  80. Shamir L, Orlov N, Eckley DM, Macura T, Johnston J, Goldberg IG (2008) Wndchrm—an open source utility for biological image analysis. Source Code Biol Med 3:13. https://doi.org/10.1186/1751-0473-3-13

    Article  PubMed  PubMed Central  Google Scholar 

  81. Yin Z, Zhou X, Bakal C, Li F, Sun Y, Perrimon N, Wong ST (2008) Using iterative cluster merging with improved gap statistics to perform online phenotype discovery in the context of high-throughput RNAi screens. BMC Bioinformatics 9:264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Jones TR, Carpenter AE, Lamprecht MR, Moffat J, Silver SJ, Grenier JK, Castoreno AB, Eggert US, Root DE, Golland P et al (2009) Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning. Proc Natl Acad Sci U S A 106:1826–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Laksameethanasan D, Tan RZ, Wei-Ling Toh G, Loo L-H (2013) cellXpress: a fast and user-friendly software platform for profiling cellular phenotypes. BMC Bioinformatics 14(Suppl 16):S4. https://doi.org/10.1186/1471-2105-14-S16-S4

    Article  PubMed  PubMed Central  Google Scholar 

  84. Pärnamaa T, Parts L (2017) Accurate classification of protein subcellular localization from high-throughput microscopy images using deep learning. G3 (Bethesda) 7:1385–1392. https://doi.org/10.1534/g3.116.033654.

    Article  Google Scholar 

  85. Haridas V, Ranjbar S, Vorobjev IA, Goldfeld AE, Barteneva NS (2017) Imaging flow cytometry analysis of intracellular pathogens. Methods 112:91–104. https://doi.org/10.1016/j.ymeth.2016.09.007

    Article  CAS  PubMed  Google Scholar 

  86. Krutzik PO, Irish JM, Nolan JP, Perez OD (2004) Analysis of protein phosphorylation and cellular signaling events by flow cytometry: techniques and clinical applications. Clin Immunol 110:206–221

    Article  CAS  PubMed  Google Scholar 

  87. Herzenberg LA, Tung J, Moore WA, Herzenberg LA, Parks DR (2006) Interpreting flow cytometry data: a guide for the perplexed. Nat Immunol 7(7):681–685

    Article  CAS  PubMed  Google Scholar 

  88. Qiu P, Gentles AJ, Plevritis SK (2011a) Discovering biological progression underlying microarray samples. PLoS Comput Biol 7:e1001123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Qiu P, Simonds EF, Bendall SC, Gibbs KD, Bruggner RV, Linderman MD, Sachs K, Nolan GP, Plevritis SK (2011b) Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol 29:886–891. https://doi.org/10.1038/nbt.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Qiu P (2017) Toward deterministic and semiautomated SPADE analysis. Cytometry A 91(3):281–289. https://doi.org/10.1002/cyto.a.23068

    Article  PubMed  Google Scholar 

  91. Gautreau G, Pejoski D, Le Grand R, Cosma A, Beignon AS, Tchitchek N (2017) SPADEVizR: an R package for visualization, analysis and integration of SPADE results. Bioinformatics 33(5):779–781. https://doi.org/10.1093/bioinformatics/btw708

    PubMed  Google Scholar 

  92. Diggins KE, Ferrell PB, Irish JM (2015) Methods for discovery and characterization of cell subsets in high dimensional mass cytometry data. Methods 82:55–63. https://doi.org/10.1016/j.ymeth.2015.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Aghaeepour N, Chattopadhyay P, Chikina M et al (2016) A benchmark for evaluation of algorithms for identification of cellular correlates of clinical outcomes. Cytometry A 89(1):16–21

    Article  CAS  PubMed  Google Scholar 

  94. Bruggner RV, Bodenmiller B, Dill DL, Tibshirani RJ, Nolan GP (2014) Automated identification of stratifying signatures in cellular subpopulations. Proc Natl Acad Sci U S A 111(26):E2770–E2777. https://doi.org/10.1073/pnas.1408792111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Arvaniti E, Claassen M (2017) Sensitive detection of rare disease-associated cell subsets via representation learning. Nat Commun 8:14825. https://doi.org/10.1038/ncomms14825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hotteling H (1933) Analysis of a complex of statistical variables in principal components. J Educ Psychol 24:417

    Article  Google Scholar 

  97. Newell EW, Sigal N, Bendall SC, Nolan GP, Davis MM (2012) Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity 36(1):142–152. https://doi.org/10.1016/j.immuni.2012.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Deininger SR-O, Ebert MP, Fütterer A, Gerhard M, Röcken C (2008) MALDI imaging combined with hierarchical clustering as a new tool for the interpretation of complex human cancers. J Proteome Res 7:5230–5236

    Article  CAS  PubMed  Google Scholar 

  99. van der Maaten LJP, Hinton GE (2008) Visualizing high-dimensional data using t-SNE. J Mach Learn Res 9:2579–2605

    Google Scholar 

  100. Macosko EZ, Basu A, Satija S et al (2015) Highly-parallel genome-wide expression profiling of individual cells using nanolietr droplets. Cell 161:1202–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Inglese P, McKenzie JS, Mroz A, Kinross J, Veselkov K, Holmes E, Takats Z, Nicholson JK, Glen RC (2017) 2017. Deep learning and 3D-DESI imaging reveal the hidden metabolic heterogeneity of cancer. Chem Sci 8(5):3500–3511. https://doi.org/10.1039/c6sc03738k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shekhar K, Brodin P, Davis MM, Chakraborty AK (2014) 2014. Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE). Proc Natl Acad Sci U S A 111(1):202–207. https://doi.org/10.1073/pnas.1321405111

    Article  CAS  PubMed  Google Scholar 

  103. Bendall SC, Davis KL, Amir ED, Tadmor MD, Simonds EF, Chen TJ, Shenfeld DK, Nolan GP (2014) Pe’er D. 2014. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157(3):714–725. https://doi.org/10.1016/j.cell.2014.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gut G, Tadmor MD, Pe’er D, Pelkmans L, Liberali P (2015) Trajectories of cell-cycle progression from fixed cell populations. Nat Methods 12:951–954. https://doi.org/10.1038/nmeth.3545

    Article  CAS  PubMed  Google Scholar 

  105. Paul F et al (2015) Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163(7):1663–1677

    Article  CAS  PubMed  Google Scholar 

  106. Setty M, Tadmor MD, Reich-Zeiliger S, Angel O, Salame TM, Kathail P, Choi K, Bendall S, Friedman N, Pe’er D (2016) Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat Biotechnol 34(6):637–645. https://doi.org/10.1038/nbt.3569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ornatsky O, Bandura D, Baranov V, Nitz M, Winnik MA, Tanner S (2010) Highly multi-parametric analysis by mass cytometry. J Immunol Methods 361:1–20. https://doi.org/10.1016/j.jim.2010.07.002

    Article  CAS  PubMed  Google Scholar 

  108. Chang Q, Ornatsky OI, Siddiqui I, Loboda A, Barabov VI, Hedley DW (2017) Imaging mass cytometry. Cytometry 91:160–169. https://doi.org/10.1002/cyto.a.23053

    Article  PubMed  Google Scholar 

  109. Combs PA, Eisen MB (2015) Low-cost, low-input RNA-seq protocols perform nearly as well as high protocols. PeerJ 3:e869. https://doi.org/10.7717/peerj.869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Carvajal-Alegria G, Gazeau P, Hillion S, Daien CI (2017) Could lymphocyte profiling be useful to diagnose systemic autoimmune diseases? Clin Rev Allerg Immunol Epub May 4. doi: https://doi.org/10.1007/s12016-017-8608-5

  111. Jamin C, Le Lann L, Alvarez-Errico D, Barbarroja N, Cantaert T, Ducreux J, Dufour AM, Gerl V, Kniesch K, Neves E, Trombetta E, Alarcon-Riquelme M, Maranon C, Pers J-O (2016) Multi-center harmonization of flow cytometers in the context of the European “PRECISESADS” project. Autoimmun Rev 15(11):1038–1045. https://doi.org/10.1016/j.autrev.2016.07.034

    Article  PubMed  Google Scholar 

  112. Krzywinski M, Altman N (2013) Points of significance: power and sample size. Nat Methods 10:1139–1140

    Article  CAS  Google Scholar 

  113. Levine JH, Simonds EF, Bendall SC, Davis KL, Amir e-AD et al (2015) Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162:184–197. https://doi.org/10.1016/j.cell.2015.05.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Macaulay IC, Voet T (2014) Single cell genomics: advances and future perspectives. PLoS Genet 10:e1004126. https://doi.org/10.1371/journal.pgen.1004126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Kawasaki ES (2004) Microarrays and the gene expression profile of a single cell. Ann N Y Acad Sci 1020:92–100

    Article  CAS  PubMed  Google Scholar 

  116. Lutsik P, Slawski M, Gasparoni G, Vedeneev N, Hein M, Walter J (2017) MeDeCon: discovery and quantification of latent components of heterogeneous methylomes. Genome Biol 18:55. https://doi.org/10.1186/s13059-017-1182-6.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Shiroguchi K, Jia TZ, Sims PA, Xie XS (2012) Digital RNA sequencing minimizes sequence-dependent bias and amplification noise with optimized single-molecule barcodes. Proc Natl Acad Sci U S A 109:1347–1352. https://doi.org/10.1073/pnas.1118018109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Grun D, Kester L, van Oudenaarden A (2014) Validation of noise models for single-cell transcriptomics. Nat Methods 11:637–644. https://doi.org/10.1038/nmeth.2930

    Article  PubMed  CAS  Google Scholar 

  119. Gong W, Rasmussen TL, Singh BN, Koyano-Nakagawa N, Pan W, Garry DJ (2017) Dpath software reveals hierarchical haemato-endothelial lineages of Etv2 progenitors based on single-cell transcriptome analysis. Nat Commun 8:14362. https://doi.org/10.1038/ncomms14362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods 5:877–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Authors are grateful for grant support from Swiss IBD Cohort to N.S.B., Ministry of Science, Kazakhstan to N.S.B. and I.A.V., and RFBR to I.A.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natasha S. Barteneva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Barteneva, N.S., Vorobjev, I.A. (2018). Heterogeneity of Metazoan Cells and Beyond: To Integrative Analysis of Cellular Populations at Single-Cell Level. In: Barteneva, N., Vorobjev, I. (eds) Cellular Heterogeneity. Methods in Molecular Biology, vol 1745. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7680-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7680-5_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7679-9

  • Online ISBN: 978-1-4939-7680-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics