Skip to main content

Status and Future of 3D Cell Culture in Toxicity Testing

  • Protocol
  • First Online:

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Drug-induced liver injury is a major reason for safety-related attrition in the pharmaceutical industry. There is continued search for in vitro models that can be used to consistently and reliably select compounds with reduced liability for liver injury. 2D in vitro models, such as liver cell lines and primary hepatocytes have been used for many decades prior to advancement to micropatterned 2D liver models; the latter have improved metabolic activity and can be cultured for long periods without loss of function/viability. The emergence of 3D liver models, including spheroids, 3D bioprinted livers, and liver-on-chip have the potential to revolutionize in vitro liver toxicity testing. These models have been collectively coined as microphysiological systems (MPS). The MPS models can be maintained in culture for at least 1-month during which they retain significant drug metabolism capability. Some MPS models can also be cocultured with other nonparenchymal supporting cells, such as endothelial, Kupffer, and stellate cells, which increases the versatility of the models for toxicity assessment. An added benefit of some MPS models is the ability to sample supernatant for biomarker measurements. There are several contexts of use for which MPS models can be applied, and the most likely use will be for candidate drug screening and mechanistic studies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Tujios S, Fontana RJ (2011) Mechanisms of drug-induced liver injury: from bedside to bench. Nat Rev Gastroenterol Hepatol 8(4):202–211. https://doi.org/10.1038/nrgastro.2011.22

    Article  CAS  PubMed  Google Scholar 

  2. Fontana RJ, Hayashi PH, Gu J, Reddy KR, Barnhart H, Watkins PB, Serrano J, Lee WM, Chalasani N, Stolz A, Davern T, Talwakar JA, Network D (2014) Idiosyncratic drug-induced liver injury is associated with substantial morbidity and mortality within 6 months from onset. Gastroenterology 147(1):96–108. e104. https://doi.org/10.1053/j.gastro.2014.03.045

    Article  CAS  PubMed  Google Scholar 

  3. Fontana RJ (2014) Pathogenesis of idiosyncratic drug-induced liver injury and clinical perspectives. Gastroenterology 146(4):914–928. https://doi.org/10.1053/j.gastro.2013.12.032

    Article  CAS  PubMed  Google Scholar 

  4. Gustafsson F, Foster AJ, Sarda S, Bridgland-Taylor MH, Kenna JG (2014) A correlation between the in vitro drug toxicity of drugs to cell lines that express human P450s and their propensity to cause liver injury in humans. Toxicol Sci 137(1):189–211. https://doi.org/10.1093/toxsci/kft223

    Article  CAS  PubMed  Google Scholar 

  5. Soltanpour Y, Hilgendorf C, Ahlstrom MM, Foster AJ, Kenna JG, Petersen A, Ungell AL (2012) Characterization of THLE-cytochrome P450 (P450) cell lines: gene expression background and relationship to P450-enzyme activity. Drug Metab Dispos 40(11):2054–2058. https://doi.org/10.1124/dmd.112.045815

    Article  CAS  PubMed  Google Scholar 

  6. Dambach DM, Andrews BA, Moulin F (2005) New technologies and screening strategies for hepatotoxicity: use of in vitro models. Toxicol Pathol 33(1):17–26. https://doi.org/10.1080/01926230590522284

    Article  CAS  PubMed  Google Scholar 

  7. O’Brien PJ, Irwin W, Diaz D, Howard-Cofield E, Krejsa CM, Slaughter MR, Gao B, Kaludercic N, Angeline A, Bernardi P, Brain P, Hougham C (2006) High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening. Arch Toxicol 80(9):580–604. https://doi.org/10.1007/s00204-006-0091-3

    Article  CAS  PubMed  Google Scholar 

  8. Schadt S, Simon S, Kustermann S, Boess F, McGinnis C, Brink A, Lieven R, Fowler S, Youdim K, Ullah M, Marschmann M, Zihlmann C, Siegrist YM, Cascais AC, Di Lenarda E, Durr E, Schaub N, Ang X, Starke V, Singer T, Alvarez-Sanchez R, Roth AB, Schuler F, Funk C (2015) Minimizing DILI risk in drug discovery – a screening tool for drug candidates. Toxicol In Vitro 30(1 Pt B):429–437. https://doi.org/10.1016/j.tiv.2015.09.019

    Article  CAS  PubMed  Google Scholar 

  9. Shah F, Leung L, Barton HA, Will Y, Rodrigues AD, Greene N, Aleo MD (2015) Setting clinical exposure levels of concern for drug-induced liver injury (DILI) using mechanistic in vitro assays. Toxicol Sci 147(2):500–514. https://doi.org/10.1093/toxsci/kfv152

    Article  CAS  PubMed  Google Scholar 

  10. Otieno MA, Snoeys J, Lam W, Ghosh A, Player MR, Pocai A, Salter R, Simic D, Skaggs H, Singh B, Heng-Keang L (2017) Fasiglifam (TAK-875): mechanistic investigation and retrospective identification of hazards for drug induced liver injury (DILI). Toxicol Sci. https://doi.org/10.1093/toxsci/kfx040

  11. Thompson RA, Isin EM, Li Y, Weidolf L, Page K, Wilson I, Swallow S, Middleton B, Stahl S, Foster AJ, Dolgos H, Weaver R, Kenna JG (2012) In vitro approach to assess the potential for risk of idiosyncratic adverse reactions caused by candidate drugs. Chem Res Toxicol 25(8):1616–1632. https://doi.org/10.1021/tx300091x

    Article  CAS  PubMed  Google Scholar 

  12. Lauschke VM, Hendriks DF, Bell CC, Andersson TB, Ingelman-Sundberg M (2016) Novel 3D culture systems for studies of human liver function and assessments of the hepatotoxicity of drugs and drug candidates. Chem Res Toxicol 29(12):1936–1955. https://doi.org/10.1021/acs.chemrestox.6b00150

    Article  CAS  PubMed  Google Scholar 

  13. Shulman M, Nahmias Y (2013) Long-term culture and coculture of primary rat and human hepatocytes. Methods Mol Biol 945:287–302. https://doi.org/10.1007/978-1-62703-125-7_17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wortelboer HM, de Kruif CA, van Iersel AA, Falke HE, Noordhoek J, Blaauboer BJ (1990) The isoenzyme pattern of cytochrome P450 in rat hepatocytes in primary culture, comparing different enzyme activities in microsomal incubations and in intact monolayers. Biochem Pharmacol 40(11):2525–2534

    Article  CAS  PubMed  Google Scholar 

  15. Kemp DC, Zamek-Gliszczynski MJ, Brouwer KL (2005) Xenobiotics inhibit hepatic uptake and biliary excretion of taurocholate in rat hepatocytes. Toxicol Sci 83(2):207–214. https://doi.org/10.1093/toxsci/kfi020

    Article  CAS  PubMed  Google Scholar 

  16. Trask OJ Jr, Moore A, LeCluyse EL (2014) A micropatterned hepatocyte coculture model for assessment of liver toxicity using high-content imaging analysis. Assay Drug Dev Technol 12(1):16–27. https://doi.org/10.1089/adt.2013.525

    Article  CAS  PubMed  Google Scholar 

  17. Lin C, Khetani SR (2016) Advances in engineered liver models for investigating drug-induced liver injury. Biomed Res Int 2016:1829148. https://doi.org/10.1155/2016/1829148

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ware BR, Berger DR, Khetani SR (2015) Prediction of drug-induced liver injury in micropatterned co-cultures containing iPSC-derived human hepatocytes. Toxicol Sci 145(2):252–262. https://doi.org/10.1093/toxsci/kfv048

    Article  CAS  PubMed  Google Scholar 

  19. Goldring C, Antoine DJ, Bonner F, Crozier J, Denning C, Fontana RJ, Hanley NA, Hay DC, Ingelman-Sundberg M, Juhila S, Kitteringham N, Silva-Lima B, Norris A, Pridgeon C, Ross JA, Young RS, Tagle D, Tornesi B, van de Water B, Weaver RJ, Zhang F, Park BK (2017) Stem cell-derived models to improve mechanistic understanding and prediction of human drug-induced liver injury. Hepatology 65(2):710–721. https://doi.org/10.1002/hep.28886

    Article  PubMed  Google Scholar 

  20. Xia L, Hong X, Sakban RB, Qu Y, Singh NH, McMillian M, Dallas S, Silva J, Sensenhauser C, Zhao S, Lim HK, Yu H (2016) Cytochrome P450 induction response in tethered spheroids as a three-dimensional human hepatocyte in vitro model. J Appl Toxicol 36(2):320–329. https://doi.org/10.1002/jat.3189

    Article  CAS  PubMed  Google Scholar 

  21. Wang Z, Luo X, Anene-Nzelu C, Yu Y, Hong X, Singh NH, Xia L, Liu S, Yu H (2015) HepaRG culture in tethered spheroids as an in vitro three-dimensional model for drug safety screening. J Appl Toxicol 35(8):909–917. https://doi.org/10.1002/jat.3090

    Article  CAS  PubMed  Google Scholar 

  22. Sirenko O, Hancock MK, Hesley J, Hong D, Cohen A, Gentry J, Carlson CB, Mann DA (2016) Phenotypic characterization of toxic compound effects on liver spheroids derived from iPSC using confocal imaging and three-dimensional image analysis. Assay Drug Dev Technol 14(7):381–394. https://doi.org/10.1089/adt.2016.729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Berger B, Donzelli M, Maseneni S, Boess F, Roth A, Krahenbuhl S, Haschke M (2016) Comparison of liver cell models using the Basel phenotyping cocktail. Front Pharmacol 7:443. https://doi.org/10.3389/fphar.2016.00443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Takahashi Y, Hori Y, Yamamoto T, Urashima T, Ohara Y, Tanaka H (2015) 3D spheroid cultures improve the metabolic gene expression profiles of HepaRG cells. Biosci Rep 35(3). https://doi.org/10.1042/BSR20150034

  25. Bell CC, Hendriks DF, Moro SM, Ellis E, Walsh J, Renblom A, Fredriksson Puigvert L, Dankers AC, Jacobs F, Snoeys J, Sison-Young RL, Jenkins RE, Nordling A, Mkrtchian S, Park BK, Kitteringham NR, Goldring CE, Lauschke VM, Ingelman-Sundberg M (2016) Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease. Sci Rep 6:25187. https://doi.org/10.1038/srep25187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Okudaira T, Amimoto N, Mizumoto H, Kajiwara T (2016) Formation of three-dimensional hepatic tissue by the bottom-up method using spheroids. J Biosci Bioeng 122(2):213–218

    Article  CAS  PubMed  Google Scholar 

  27. Zhang GL, Fisher JP, Leong KW (2015) 3D bioprinting and nanotechnology in tissue engineering and regenerative medicine. Elsevier, London

    Google Scholar 

  28. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785. https://doi.org/10.1038/nbt.2958

    Article  CAS  PubMed  Google Scholar 

  29. Nguyen DG, Funk J, Robbins JB, Crogan-Grundy C, Presnell SC, Singer T, Roth AB (2016) Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro. PLoS One 11(7):e0158674. https://doi.org/10.1371/journal.pone.0158674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hanumegowda UM, Wu Y, Smith TR, Lehman-McKeeman L (2016) Monocrotaline toxicity in 3D-bioprinted human liver tissues. The Toxicologist, Supplement to Toxicological Sciences 150(1)

    Google Scholar 

  31. Norona LM, Nguyen DG, Gerber DA, Presnell SC, LeCluyse EL (2016) Editor’s highlight: modeling compound-induced fibrogenesis in vitro using three-dimensional bioprinted human liver tissues. Toxicol Sci 154(2):354–367. https://doi.org/10.1093/toxsci/kfw169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32(8):760–772. https://doi.org/10.1038/nbt.2989

    Article  CAS  PubMed  Google Scholar 

  33. Ingber DE (2016) Reverse engineering human pathophysiology with organs-on-chips. Cell 164(6):1105–1109. https://doi.org/10.1016/j.cell.2016.02.049

    Article  CAS  PubMed  Google Scholar 

  34. Vernetti LA, Senutovitch N, Boltz R, DeBiasio R, Shun TY, Gough A, Taylor DL (2016) A human liver microphysiology platform for investigating physiology, drug safety, and disease models. Exp Biol Med 241(1):101–114. https://doi.org/10.1177/1535370215592121

    Article  CAS  Google Scholar 

  35. Senutovitch N, Vernetti L, Boltz R, DeBiasio R, Gough A, Taylor DL (2015) Fluorescent protein biosensors applied to microphysiological systems. Exp Biol Med 240(6):795–808. https://doi.org/10.1177/1535370215584934

    Article  CAS  Google Scholar 

  36. Hamilton G (2017) Organs-on-chips: 3D microphysiological systems for understanding mechanism of action in drug discovery and development. The Toxicologist, Supplement to Toxicological Sciences: Abstract #2350

    Google Scholar 

  37. Church RJ, Watkins PB (2017) The transformation in biomarker detection and management of drug-induced liver injury. Liver Int. https://doi.org/10.1111/liv.13441

Download references

Acknowledgments

The authors acknowledge the Innovation and Quality (IQ) Microphysiological (MPS) Working Group members and the participation of Brett Howell of DILIsym, Inc. and Paul Watkins of University of North Carolina in discussions on MPS standards for liver models.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monicah A. Otieno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Otieno, M.A., Gan, J., Proctor, W. (2018). Status and Future of 3D Cell Culture in Toxicity Testing. In: Chen, M., Will, Y. (eds) Drug-Induced Liver Toxicity. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-7677-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7677-5_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-7676-8

  • Online ISBN: 978-1-4939-7677-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics