Skip to main content

Hormone Treatments in Studying Leaf Senescence

  • Protocol
  • First Online:
Plant Senescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1744))

Abstract

As the last stage of plant development, senescence can be regulated by a large number of signals such as aging, reproductive growth, nutrient availability, and stresses. Various plant hormones have been shown to be involved in regulating plant senescence. For example, ethylene, abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), and strigolactones (SLs) promote senescence, whereas cytokinins (CKs) inhibit senescence. Different hormones regulate senescence via distinct pathways, while cross talks between signaling pathways exist. In senescence-related studies, treating plants with various hormones to alter senescence is a common practice. In this chapter, we summarize experimental procedures of treating detached Arabidopsis leaves with a number of senescence-regulating hormones including ABA, SLs, MeJA, SA peptide hormones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avice JC, Etienne P (2014) Leaf senescence and nitrogen remobilization efficiency in oilseed rape (Brassica napus L.) J Exp Bot 65:3813–3824

    Article  PubMed  Google Scholar 

  2. Sarwat M, Naqvi AR, Ahmad P et al (2013) Phytohormones and microRNAs as sensors and regulators of leaf senescence: assigning macro roles to small molecules. Biotechnol Adv 31:1153–1171

    Article  CAS  PubMed  Google Scholar 

  3. Khan M, Rozhon W, Poppenberger B (2014) The role of hormones in the aging of plants—a mini-review. Gerontology 60:49–55

    Article  CAS  PubMed  Google Scholar 

  4. Arrom L, Munne-Bosch S (2012) Hormonal regulation of leaf senescence in Lilium. J Plant Physiol 169:1542–1550

    Article  CAS  PubMed  Google Scholar 

  5. Finkelstein R (2013) Abscisic Acid synthesis and response. Arabidopsis Book 11:e0166

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zeevaart JAD, Creelman RA (2003) Metabolism and physiology of abscisic acid. Ann Rev Plant Physiol Plant Mol Biol 39:439–473

    Article  Google Scholar 

  7. Lee IC, Hong SW, Whang SS et al (2011) Age-dependent action of an ABA-inducible receptor kinase, RPK1, as a positive regulator of senescence in Arabidopsis leaves. Plant Cell Physiol 52:651–662

    Article  CAS  PubMed  Google Scholar 

  8. Song Y, Xiang F, Zhang G et al (2016) Abscisic acid as an internal integrator of multiple physiological processes modulates leaf senescence onset in Arabidopsis thaliana. Front Plant Sci 7:181

    PubMed  PubMed Central  Google Scholar 

  9. Mou W, Li D, Luo Z et al (2015) Transcriptomic analysis reveals possible influences of ABA on secondary metabolism of pigments, flavonoids and antioxidants in tomato fruit during ripening. PLoS One 10:e0129598

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang K, Gan SS (2012) An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves. Plant Physiol 158:961–969

    Article  CAS  PubMed  Google Scholar 

  11. Kim J, Chang C, Tucker ML (2015) To grow old: regulatory role of ethylene and jasmonic acid in senescence. Front Plant Sci 6:20

    PubMed  PubMed Central  Google Scholar 

  12. Balbi V, Devoto A (2008) Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol 177:301–318

    Article  CAS  PubMed  Google Scholar 

  13. Schommer C, Palatnik JF, Aggarwal P et al (2008) Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 6:e230

    Article  PubMed  PubMed Central  Google Scholar 

  14. Seltmann MA, Hussels W, Berger S (2010) Jasmonates during senescence: signals or products of metabolism? Plant Signal Behav 5:1493–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Abreu ME, Munne-Bosch S (2009) Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana. J Exp Bot 60:1261–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Morris K, Mackerness SA, Page T et al (2000) Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J 23:677–685

    Article  CAS  PubMed  Google Scholar 

  17. Besseau S, Li J, Palva ET (2012) WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J Exp Bot 63:2667–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ueda H, Kusaba M (2015) Strigolactone regulates leaf senescence in concert with ethylene in Arabidopsis. Plant Physiol 169:138–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yamada Y, Umehara M (2015) Possible roles of strigolactones during leaf senescence. Plants (Basel) 4:664–677

    Article  Google Scholar 

  20. Kusaba M, Tanaka A, Tanaka R (2013) Stay-green plants: what do they tell us about the molecular mechanism of leaf senescence. Photosynth Res 117:221–234

    Article  CAS  PubMed  Google Scholar 

  21. Chilley P (2003) Polypeptide hormones: signaling molecules in plants. Vitam Horm 66:317–344

    Article  CAS  PubMed  Google Scholar 

  22. Lease KA, Walker JC (2006) The Arabidopsis unannotated secreted peptide database, a resource for plant peptidomics. Plant Physiol 142:831–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Czyzewicz N, Yue K, Beeckman T et al (2013) Message in a bottle: small signalling peptide outputs during growth and development. J Exp Bot 64:5281–5296

    Article  CAS  PubMed  Google Scholar 

  24. Kong J, Dong Y, Xu L et al (2014) Effects of foliar application of salicylic acid and nitric oxide in alleviating iron deficiency induced chlorosis of Arachis hypogaea L. Bot Stud 55:1–12

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31600991) (to Z.Z.), the Science Foundation for Young Scholars of the Tobacco Research Institute, the Chinese Academy of Agricultural Sciences (2015B02) (to Z.Z.), and the Agricultural Science and Technology Innovation Program (ASTIP-TRIC02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfeng Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, Z., Guo, Y. (2018). Hormone Treatments in Studying Leaf Senescence. In: Guo, Y. (eds) Plant Senescence. Methods in Molecular Biology, vol 1744. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7672-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7672-0_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7670-6

  • Online ISBN: 978-1-4939-7672-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics