Hypoxia pp 265-276 | Cite as

Evaluation of Macrophage Polarization in Pancreatic Cancer Microenvironment Under Hypoxia

  • Kuldeep S. Attri
  • Kamiya Mehla
  • Pankaj K. SinghEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1742)


Hypoxic microenvironment found in pancreatic ductal adenocarcinoma and other solid tumors is central to physiological and metabolic alterations of immune cells that significantly impact tumor growth dynamics. Hypoxic adaptations in the immune cells are primarily mediated by the stabilization of hypoxia-inducible factor-1 alpha (HIF-1α), which regulates cellular metabolism by modulating glycolysis and other interconnected metabolic pathways. HIF-1α plays distinct roles in M1 and M2 macrophage polarization, which, in turn, regulates tumor cell immune escape and growth. In this chapter, we describe a real-time PCR-based assay to monitor the transcript levels of Arg1 and Nos2 to assess the status of tumor-induced macrophage polarization under hypoxic conditions. This method can be effectively utilized to delineate the genes critical for M1/M2 polarization in the hypoxic tumor microenvironment and would provide opportunities to develop immunomodulating therapies to regulate the tumor growth, progression, and metastatic dissemination.

Key words

Pancreatic cancer Macrophages Metabolism Hypoxia HIF-1α 


  1. 1.
    Whatcott CJ, Diep CH, Jiang P, Watanabe A, LoBello J, Sima C, Hostetter G, Shepard HM, Von Hoff DD, Han H (2015) Desmoplasia in primary tumors and metastatic lesions of pancreatic cancer. Clin Cancer Res 21:3561–3568CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Chaika NV, Gebregiworgis T, Lewallen ME, Purohit V, Radhakrishnan P, Liu X, Zhang B, Mehla K, Brown RB, Caffrey T, Yu F, Johnson KR, Powers R, Hollingsworth MA, Singh PK (2012) MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer. Proc Natl Acad Sci U S A 109:13787–13792CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Surendra K. Shukla, Vinee Purohit, Kamiya Mehla, Venugopal Gunda, Nina V. Chaika, Enza Vernucci, Ryan J. King, Jaime Abrego, Gennifer D. Goode, Aneesha Dasgupta, Alysha L. Illies, Teklab Gebregiworgis, Bingbing Dai, Jithesh J. Augustine, Divya Murthy, Kuldeep S. Attri, Oksana Mashadova, Paul M. Grandgenett, Robert Powers, Quan P. Ly, Audrey J. Lazenby, Jean L. Grem, Fang Yu, José M. Matés, John M. Asara, Jung-whan Kim, Jordan H. Hankins, Colin Weekes, Michael A. Hollingsworth, Natalie J. Serkova, Aaron R. Sasson, Jason B. Fleming, Jennifer M. Oliveto, Costas A. Lyssiotis, Lewis C. Cantley, Lyudmyla Berim, Pankaj K. Singh, (2017) MUC1 and HIF-1alpha Signaling Crosstalk Induces Anabolic Glucose Metabolism to Impart Gemcitabine Resistance to Pancreatic Cancer. Cancer Cell 32(1):71-87.e7CrossRefPubMedGoogle Scholar
  4. 4.
    Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252CrossRefPubMedGoogle Scholar
  5. 5.
    Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555CrossRefPubMedGoogle Scholar
  6. 6.
    Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, Cline GW, Phillips AJ, Medzhitov R (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513:559–563CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Galvan-Pena S, O’Neill LA (2014) Metabolic reprograming in macrophage polarization. Front Immunol 5:420PubMedPubMedCentralGoogle Scholar
  8. 8.
    Geeraerts X, Bolli E, Fendt SM, Van Ginderachter JA (2017) Macrophage metabolism as therapeutic target for cancer, atherosclerosis, and obesity. Front Immunol 8:289CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fang HY, Hughes R, Murdoch C, Coffelt SB, Biswas SK, Harris AL, Johnson RS, Imityaz HZ, Simon MC, Fredlund E, Greten FR, Rius J, Lewis CE (2009) Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia. Blood 114:844–859CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Jablonski KA, Amici SA, Webb LM, Ruiz-Rosado Jde D, Popovich PG, Partida-Sanchez S, Guerau-de-Arellano M (2015) Novel markers to delineate murine M1 and M2 macrophages. PLoS One 10:e0145342CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Zajac E, Schweighofer B, Kupriyanova TA, Juncker-Jensen A, Minder P, Quigley JP, Deryugina EI (2013) Angiogenic capacity of M1- and M2-polarized macrophages is determined by the levels of TIMP-1 complexed with their secreted proMMP-9. Blood 122:4054–4067CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Kuldeep S. Attri
    • 1
  • Kamiya Mehla
    • 1
  • Pankaj K. Singh
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.The Eppley Institute for Cancer and Allied DiseasesUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaUSA
  3. 3.Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaUSA
  4. 4.Department of Genetics, Cell Biology, and AnatomyUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations