Skip to main content

Testing Acute Oxygen Sensing in Genetically Modified Mice: Plethysmography and Amperometry

  • Protocol
  • First Online:
Hypoxia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1742))

Abstract

Monitoring responsiveness to acute hypoxia of whole animals and single cells is essential to investigate the nature of the mechanisms underlying oxygen (O2) sensing. Here we describe the protocols followed in our laboratory to evaluate the ventilatory response to hypoxia in normal and genetically modified animals. We also describe the amperometric technique used to monitor single-cell catecholamine release from chemoreceptor cells in carotid body and adrenal medulla slices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. López-Barneo J, Pardal R, Ortega-Sáenz P (2001) Cellular mechanism of oxygen sensing. Annu Rev Physiol 63:259–287

    Article  PubMed  Google Scholar 

  2. Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148:399–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Weir EK, López-Barneo J, Buckler KJ, Archer SL (2005) Acute oxygen-sensing mechanisms. N Engl J Med 353:2042–2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. López-Barneo J, Pardal R, Montoro RJ, Smani T, García-Hirschfeld J, Ureña J (1999) K+ and Ca2+ channel activity and cytosolic [Ca2+] in oxygen-sensing tissues. Respir Physiol 115:215–227

    Article  PubMed  Google Scholar 

  5. Kemp PJ, Peers C (2007) Oxygen sensing by ion channels. Essays Biochem 43:77–90

    Article  CAS  PubMed  Google Scholar 

  6. López-Barneo J, Ortega-Sáenz P, González-Rodríguez P, Fernández-Agúera MC, Macías D, Pardal R, Gao L (2016) Oxygen-sensing by arterial chemoreceptors: mechanisms and medical translation. Mol Asp Med 47-48:90–108

    Article  Google Scholar 

  7. Ortega-Sáenz P, Pardal R, Levitsky K, Villadiego J, Munoz-Manchado AB, Duran R, Bonilla-Henao V, Arias-Mayenco I, Sobrino V, Ordonez A, Oliver M, Toledo-Aral JJ, López-Barneo J (2013) Cellular properties and chemosensory responses of the human carotid body. J Physiol 591:6157–6173

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ortega-Sáenz P, Pascual A, Piruat JI, López-Barneo J (2007) Mechanisms of acute oxygen sensing by the carotid body: lessons from genetically modified animals. Respir Physiol Neurobiol 157:140–147

    Article  PubMed  Google Scholar 

  9. Ortega-Sáenz P, Levitsky KL, Marcos-Almaraz MT, Bonilla-Henao V, Pascual A, López-Barneo J (2010) Carotid body chemosensory responses in mice deficient of TASK channels. J Gen Physiol 135:379–392

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fernández-Agüera MC, Gao L, González-Rodríguez P, Pintado CO, Arias-Mayenco I, García-Flores P, García-Perganeda A, Pascual A, Ortega-Sáenz P, López-Barneo J (2015) Oxygen sensing by arterial chemoreceptors depends on mitochondrial complex I signaling. Cell Metab 22:825–837

    Article  PubMed  Google Scholar 

  11. Aaron EA, Powell FL (1993) Effect of chronic hypoxia on hypoxic ventilatory response in awake rats. J Appl Physiol (1985) 74:1635–1640

    Article  CAS  Google Scholar 

  12. Jacky JP (1978) A plethysmograph for long-term measurements of ventilation in unrestrained animals. J Appl Physiol Respir Environ Exerc Physiol 45:644–647

    CAS  PubMed  Google Scholar 

  13. Mortola JP, Frappell PB (1998) On the barometric method for measurements of ventilation, and its use in small animals. Can J Physiol Pharmacol 76:937–944

    Article  CAS  PubMed  Google Scholar 

  14. Pardal R, López-Barneo J (2002) Carotid body thin slices: responses of glomus cells to hypoxia and K(+)-channel blockers. Respir Physiol Neurobiol 132:69–79

    Article  CAS  PubMed  Google Scholar 

  15. Chow RH, l von R (1995) Electrochemical detection of secretion from single cells. In: Sakmann B, Neher E (eds) Single-Channel recording, 2nd edn. Plenum Press, New York, pp 245–275

    Chapter  Google Scholar 

  16. Gillis KD (1995) Techniques for membrane capacitance measurements. In: Sakmann B, Neher E (eds) Single-Channel recording, 2nd edn. Plenum Press, New York, pp 155–198

    Chapter  Google Scholar 

  17. Ureña J, Fernández-Chacón R, Benot AR, Alvarez de Toledo GA, López-Barneo J (1994) Hypoxia induces voltage-dependent Ca2+ entry and quantal dopamine secretion in carotid body glomus cells. Proc Natl Acad Sci U S A 91:10208–10211

    Article  PubMed  PubMed Central  Google Scholar 

  18. Easton PA, Slykerman LJ, Anthonisen NR (1986) Ventilatory response to sustained hypoxia in normal adults. J Appl Physiol (1985) 61:906–911

    Article  CAS  Google Scholar 

  19. Liang PJ, Bascom DA, Robbins PA (1997) Extended models of the ventilatory response to sustained isocapnic hypoxia in humans. J Appl Physiol (1985) 82:667–677

    Article  CAS  Google Scholar 

  20. Powell FL, Milsom WK, Mitchell GS (1998) Time domains of the hypoxic ventilatory response. Respir Physiol 112:123–134

    Article  CAS  PubMed  Google Scholar 

  21. Steinback CD, Poulin MJ (2007) Ventilatory responses to isocapnic and poikilocapnic hypoxia in humans. Respir Physiol Neurobiol 155:104–113

    Article  PubMed  Google Scholar 

  22. Duffin J (2007) Measuring the ventilatory response to hypoxia. J Physiol 584:285–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Teppema LJ, Dahan A (2010) The ventilatory response to hypoxia in mammals: mechanisms, measurement, and analysis. Physiol Rev 90:675–754

    Article  CAS  PubMed  Google Scholar 

  24. Palmer LA, May WJ, deRonde K, Brown-Steinke K, Gaston B, Lewis SJ (2013) Hypoxia-induced ventilatory responses in conscious mice: gender differences in ventilatory roll-off and facilitation. Respir Physiol Neurobiol 185:497–505

    Article  PubMed  Google Scholar 

  25. Cunningham DJC, Robbins PA (1986) Wolff CB integration of respiratory responses to changes in alveolar partial pressures of CO2 and O2 and in arterial pH. In: Fishman AP, Cherniack NS, Widdicombe JG (eds) Handbook of physiology, section 3, The Respiratory System. II. American Physiological Society, Bethesda, MD, pp 475–528

    Google Scholar 

  26. Clement ID, Bascom DA, Conway J, Dorrington KL, O’Connor DF, Painter R, Paterson DJ, Robbins PA (1992) An assessment of central-peripheral ventilatory chemoreflex interaction in humans. Respir Physiol 88:87–100

    Article  CAS  PubMed  Google Scholar 

  27. Lloyd BB, Cunningham DJC (1963) A quantitative approach to the regulation of human respiration. In: Cunningham DJC, Lloyd BB (eds) The regulation of human respiration. Blackwell, Oxford, pp 331–349

    Google Scholar 

  28. Mohan R, Duffin J (1997) The effect of hypoxia on the ventilatory response to carbon dioxide in man. Respir Physiol 108:101–115

    Article  CAS  PubMed  Google Scholar 

  29. Ortega-Sáenz P, Pardal R, García-Fernández M, López-Barneo J (2003) Rotenone selectively occludes sensitivity to hypoxia in rat carotid body glomus cells. J Physiol 548:789–800

    Article  PubMed  PubMed Central  Google Scholar 

  30. García-Fernández M, Ortega-Sáenz P, Castellano A, López-Barneo J (2007) Mechanisms of low-glucose sensitivity in carotid body glomus cells. Diabetes 56:2893–2900

    Article  PubMed  Google Scholar 

  31. Gao L, González-Rodríguez P, Ortega-Sáenz P, López-Barneo J (2017) Redox signaling in acute oxygen sensing. Redox Biol 12:908–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ganfornina MD, López-Barneo J (1992) Potassium channel types in arterial chemoreceptor cells and their selective modulation by oxygen. J Gen Physiol 100:401–426

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Botín Foundation, the Spanish Ministry of Economy and Innovation (SAF2012-39343, SAF2016-74990-R), and the European Research Council (ERC Advanced Grant PRJ201502629).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Patricia Ortega-Sáenz or José López-Barneo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ortega-Sáenz, P., Caballero, C., Gao, L., López-Barneo, J. (2018). Testing Acute Oxygen Sensing in Genetically Modified Mice: Plethysmography and Amperometry. In: Huang, L. (eds) Hypoxia. Methods in Molecular Biology, vol 1742. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7665-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7665-2_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7664-5

  • Online ISBN: 978-1-4939-7665-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics