Advertisement

Hypoxia pp 139-153 | Cite as

Testing Acute Oxygen Sensing in Genetically Modified Mice: Plethysmography and Amperometry

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1742)

Abstract

Monitoring responsiveness to acute hypoxia of whole animals and single cells is essential to investigate the nature of the mechanisms underlying oxygen (O2) sensing. Here we describe the protocols followed in our laboratory to evaluate the ventilatory response to hypoxia in normal and genetically modified animals. We also describe the amperometric technique used to monitor single-cell catecholamine release from chemoreceptor cells in carotid body and adrenal medulla slices.

Key words

Acute oxygen sensing Hypoxia Hyperventilation Plethysmography Single-cell secretion Amperometry Genetically modified mice 

Notes

Acknowledgments

This work was supported by the Botín Foundation, the Spanish Ministry of Economy and Innovation (SAF2012-39343, SAF2016-74990-R), and the European Research Council (ERC Advanced Grant PRJ201502629).

References

  1. 1.
    López-Barneo J, Pardal R, Ortega-Sáenz P (2001) Cellular mechanism of oxygen sensing. Annu Rev Physiol 63:259–287CrossRefPubMedGoogle Scholar
  2. 2.
    Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148:399–408CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Weir EK, López-Barneo J, Buckler KJ, Archer SL (2005) Acute oxygen-sensing mechanisms. N Engl J Med 353:2042–2055CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    López-Barneo J, Pardal R, Montoro RJ, Smani T, García-Hirschfeld J, Ureña J (1999) K+ and Ca2+ channel activity and cytosolic [Ca2+] in oxygen-sensing tissues. Respir Physiol 115:215–227CrossRefPubMedGoogle Scholar
  5. 5.
    Kemp PJ, Peers C (2007) Oxygen sensing by ion channels. Essays Biochem 43:77–90CrossRefPubMedGoogle Scholar
  6. 6.
    López-Barneo J, Ortega-Sáenz P, González-Rodríguez P, Fernández-Agúera MC, Macías D, Pardal R, Gao L (2016) Oxygen-sensing by arterial chemoreceptors: mechanisms and medical translation. Mol Asp Med 47-48:90–108CrossRefGoogle Scholar
  7. 7.
    Ortega-Sáenz P, Pardal R, Levitsky K, Villadiego J, Munoz-Manchado AB, Duran R, Bonilla-Henao V, Arias-Mayenco I, Sobrino V, Ordonez A, Oliver M, Toledo-Aral JJ, López-Barneo J (2013) Cellular properties and chemosensory responses of the human carotid body. J Physiol 591:6157–6173CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ortega-Sáenz P, Pascual A, Piruat JI, López-Barneo J (2007) Mechanisms of acute oxygen sensing by the carotid body: lessons from genetically modified animals. Respir Physiol Neurobiol 157:140–147CrossRefPubMedGoogle Scholar
  9. 9.
    Ortega-Sáenz P, Levitsky KL, Marcos-Almaraz MT, Bonilla-Henao V, Pascual A, López-Barneo J (2010) Carotid body chemosensory responses in mice deficient of TASK channels. J Gen Physiol 135:379–392CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fernández-Agüera MC, Gao L, González-Rodríguez P, Pintado CO, Arias-Mayenco I, García-Flores P, García-Perganeda A, Pascual A, Ortega-Sáenz P, López-Barneo J (2015) Oxygen sensing by arterial chemoreceptors depends on mitochondrial complex I signaling. Cell Metab 22:825–837CrossRefPubMedGoogle Scholar
  11. 11.
    Aaron EA, Powell FL (1993) Effect of chronic hypoxia on hypoxic ventilatory response in awake rats. J Appl Physiol (1985) 74:1635–1640CrossRefGoogle Scholar
  12. 12.
    Jacky JP (1978) A plethysmograph for long-term measurements of ventilation in unrestrained animals. J Appl Physiol Respir Environ Exerc Physiol 45:644–647PubMedGoogle Scholar
  13. 13.
    Mortola JP, Frappell PB (1998) On the barometric method for measurements of ventilation, and its use in small animals. Can J Physiol Pharmacol 76:937–944CrossRefPubMedGoogle Scholar
  14. 14.
    Pardal R, López-Barneo J (2002) Carotid body thin slices: responses of glomus cells to hypoxia and K(+)-channel blockers. Respir Physiol Neurobiol 132:69–79CrossRefPubMedGoogle Scholar
  15. 15.
    Chow RH, l von R (1995) Electrochemical detection of secretion from single cells. In: Sakmann B, Neher E (eds) Single-Channel recording, 2nd edn. Plenum Press, New York, pp 245–275CrossRefGoogle Scholar
  16. 16.
    Gillis KD (1995) Techniques for membrane capacitance measurements. In: Sakmann B, Neher E (eds) Single-Channel recording, 2nd edn. Plenum Press, New York, pp 155–198CrossRefGoogle Scholar
  17. 17.
    Ureña J, Fernández-Chacón R, Benot AR, Alvarez de Toledo GA, López-Barneo J (1994) Hypoxia induces voltage-dependent Ca2+ entry and quantal dopamine secretion in carotid body glomus cells. Proc Natl Acad Sci U S A 91:10208–10211CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Easton PA, Slykerman LJ, Anthonisen NR (1986) Ventilatory response to sustained hypoxia in normal adults. J Appl Physiol (1985) 61:906–911CrossRefGoogle Scholar
  19. 19.
    Liang PJ, Bascom DA, Robbins PA (1997) Extended models of the ventilatory response to sustained isocapnic hypoxia in humans. J Appl Physiol (1985) 82:667–677CrossRefGoogle Scholar
  20. 20.
    Powell FL, Milsom WK, Mitchell GS (1998) Time domains of the hypoxic ventilatory response. Respir Physiol 112:123–134CrossRefPubMedGoogle Scholar
  21. 21.
    Steinback CD, Poulin MJ (2007) Ventilatory responses to isocapnic and poikilocapnic hypoxia in humans. Respir Physiol Neurobiol 155:104–113CrossRefPubMedGoogle Scholar
  22. 22.
    Duffin J (2007) Measuring the ventilatory response to hypoxia. J Physiol 584:285–293CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Teppema LJ, Dahan A (2010) The ventilatory response to hypoxia in mammals: mechanisms, measurement, and analysis. Physiol Rev 90:675–754CrossRefPubMedGoogle Scholar
  24. 24.
    Palmer LA, May WJ, deRonde K, Brown-Steinke K, Gaston B, Lewis SJ (2013) Hypoxia-induced ventilatory responses in conscious mice: gender differences in ventilatory roll-off and facilitation. Respir Physiol Neurobiol 185:497–505CrossRefPubMedGoogle Scholar
  25. 25.
    Cunningham DJC, Robbins PA (1986) Wolff CB integration of respiratory responses to changes in alveolar partial pressures of CO2 and O2 and in arterial pH. In: Fishman AP, Cherniack NS, Widdicombe JG (eds) Handbook of physiology, section 3, The Respiratory System. II. American Physiological Society, Bethesda, MD, pp 475–528Google Scholar
  26. 26.
    Clement ID, Bascom DA, Conway J, Dorrington KL, O’Connor DF, Painter R, Paterson DJ, Robbins PA (1992) An assessment of central-peripheral ventilatory chemoreflex interaction in humans. Respir Physiol 88:87–100CrossRefPubMedGoogle Scholar
  27. 27.
    Lloyd BB, Cunningham DJC (1963) A quantitative approach to the regulation of human respiration. In: Cunningham DJC, Lloyd BB (eds) The regulation of human respiration. Blackwell, Oxford, pp 331–349Google Scholar
  28. 28.
    Mohan R, Duffin J (1997) The effect of hypoxia on the ventilatory response to carbon dioxide in man. Respir Physiol 108:101–115CrossRefPubMedGoogle Scholar
  29. 29.
    Ortega-Sáenz P, Pardal R, García-Fernández M, López-Barneo J (2003) Rotenone selectively occludes sensitivity to hypoxia in rat carotid body glomus cells. J Physiol 548:789–800CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    García-Fernández M, Ortega-Sáenz P, Castellano A, López-Barneo J (2007) Mechanisms of low-glucose sensitivity in carotid body glomus cells. Diabetes 56:2893–2900CrossRefPubMedGoogle Scholar
  31. 31.
    Gao L, González-Rodríguez P, Ortega-Sáenz P, López-Barneo J (2017) Redox signaling in acute oxygen sensing. Redox Biol 12:908–915CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ganfornina MD, López-Barneo J (1992) Potassium channel types in arterial chemoreceptor cells and their selective modulation by oxygen. J Gen Physiol 100:401–426CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevilleSpain
  2. 2.Departamento de Fisiología Médica y Biofísica, Facultad de MedicinaUniversidad de SevillaSevilleSpain
  3. 3.Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
  4. 4.Division of Pulmonary and Critical Care Medicine, Department of MedicineJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations