Advertisement

Schwann Cells pp 371-384 | Cite as

Whole Mount In Situ Hybridization and Immunohistochemistry for Zebrafish Larvae

  • Rebecca L. Cunningham
  • Kelly R. MonkEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1739)

Abstract

In situ hybridization enables visualization of mRNA localization, and immunohistochemistry enables visualization of protein localization within a tissue or organism. Both techniques have been extensively utilized in zebrafish (Thisse et al., Development 119:1203–1215, 1993; Dutton et al., Development 128:4113–4125, 2001; Gilmour et al., Neuron 34:577–588, 2002; Lyons et al., Curr Biol 15:513–524, 2005) including for visualization of mRNA localization in Schwann cells (Lyons et al., Curr Biol 15:513–524, 2005; Monk et al., Science 325:1402–1405, 2009). For in situ hybridization, here, we outline how to generate RNA probes, conduct whole mount in situ hybridization for larvae, and list RNA probes that label different stages of Schwann cell development in zebrafish. For immunohistochemistry, the protocol we outline can be used to mark Schwann cells of sensory and motor nerves to examine properties such as developmental stage, morphology, proliferation, and apoptosis.

Key words

In situ hybridization RNA Immunohistochemistry Antibody Fluorescence 

References

  1. 1.
    Thisse C, Thisse B, Schilling TF et al (1993) Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development 119:1203–1215PubMedGoogle Scholar
  2. 2.
    Dutton KA, Pauliny A, Lopes S et al (2001) Zebrafish colourless encodes sox10 and specifies non-ectomesenchymal neural crest fates. Development 128:4113–4125PubMedGoogle Scholar
  3. 3.
    Gilmour DT, Maischein HM, Nüsslein-Volhard C (2002) Migration and function of a glial subtype in the vertebrate peripheral nervous system. Neuron 34:577–588CrossRefPubMedGoogle Scholar
  4. 4.
    Lyons DA, Pogoda HM, Voas MG et al (2005) erbb3 and erbb2 are essential for Schwann cell migration and myelination in zebrafish. Curr Biol 15:513–524CrossRefPubMedGoogle Scholar
  5. 5.
    Rubinstein AL, Lee D, Luo R et al (2000) Genes dependent on zebrafish cyclops function identified by AFLP differential gene expression screen. Genesis 26:86–97CrossRefPubMedGoogle Scholar
  6. 6.
    Monk KR, Naylor SG, Glenn TD et al (2009) AG protein–coupled receptor is essential for Schwann cells to initiate myelination. Science 325:1402–1405CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Levavasseur F, Mandemakers W, Visser P et al (1998) Comparison of sequence and function of the Oct-6 genes in zebrafish, chicken and mouse. Mech Dev 74:89–98CrossRefPubMedGoogle Scholar
  8. 8.
    Oxtoby E, Jowett T (1993) Cloning of the zebrafish krox-20 gene (krx-20) and its expression during hindbrain development. Nucleic Acids Res 21:1087–1095CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Brösamle C, Halpern M (2002) Characterization of myelination in the developing zebrafish. Glia 39:47–57CrossRefPubMedGoogle Scholar
  10. 10.
    Takada N, Appel B (2010) Identification of genes expressed by zebrafish oligodendrocytes using a differential microarray screen. Dev Dyn 239:2041–2047CrossRefPubMedGoogle Scholar
  11. 11.
    Takada N, Kucenas S, Appel B (2010) Sox10 is necessary for oligodendrocyte survival following axon wrapping. Glia 58:996–1006PubMedPubMedCentralGoogle Scholar
  12. 12.
    Schaefer K, Brösamle C (2009) Zwilling-A and-B, two related myelin proteins of teleosts, which originate from a single bicistronic transcript. Mol Biol Evol 26:495–499CrossRefPubMedGoogle Scholar
  13. 13.
    Pogoda HM, Sternheim N, Lyons DA et al (2006) A genetic screen identifies genes essential for development of myelinated axons in zebrafish. Dev Biol 298:118–131CrossRefPubMedGoogle Scholar
  14. 14.
    Kazakova N, Li H, Mora A et al (2006) A screen for mutations in zebrafish that affect myelin gene expression in Schwann cells and oligodendrocytes. Dev Biol 297:1–13CrossRefPubMedGoogle Scholar
  15. 15.
    Thisse C, Thisse B (2008) High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3:59–69CrossRefPubMedGoogle Scholar
  16. 16.
    Langworthy MM, Appel B (2012) Schwann cell myelination requires Dynein function. Neural Dev 7:1CrossRefGoogle Scholar
  17. 17.
    Macdonald R (1999) Zebrafish immunohistochemistry. In: Guielle M (ed) Molecular methods in developmental biology: Xenopus and Zebrafish, vol 147. Humana Press, Totowa, pp 77–88CrossRefGoogle Scholar
  18. 18.
    Ng AN, de Jong-Curtain TA, Mawdsley DJ et al (2005) Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis. Dev Biol 286:114–135CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Department of Developmental BiologyWashington University in St. LouisSt. LouisUSA
  2. 2.Vollum InstituteOregon Health & Science UniversityPortlandUSA

Personalised recommendations