Abstract
Exosomes are small (30–150 nm) vesicles of endosomal origin secreted by most cell types. Exosomes contain proteins, lipids, and RNA species including microRNA, mRNA, rRNA, and long noncoding RNAs. The mechanisms associated with exosome synthesis and cargo loading are still poorly understood. A role for exosomes in intercellular communication has been reported in physiological and pathological conditions both in vitro and in vivo. Previous studies have suggested that Schwann cell-derived exosomes regulate neuronal functions, but the mechanisms are still unclear. Here, we describe protocols to establish rat neonatal Schwann cell cultures and to isolate exosomes from the conditioned medium of these cultures by differential ultracentrifugation. To analyze the RNA content of Schwann cell-derived exosomes, we detail protocols for RNA extraction and next-generation sequencing using miRNA and mRNA libraries. The protocol also includes RNA sequencing of Schwann cells, which allows the comparison between RNA content from cells and the secreted exosomes. Identification of RNAs present in Schwann cell-derived exosomes is a valuable tool to understand novel roles of Schwann cells in neuronal function in health and disease.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Montecalvo A, Shufesky WJ, Stolz DB et al (2008) Exosomes as a short-range mechanism to spread alloantigen between dendritic cells during T cell allorecognition. J Immunol 180:3081–3090
Vella LJ, Sharples RA, Lawson VA et al (2007) Packaging of prions into exosomes is associated with a novel pathway of PrP processing. J Pathol 211:582–590. https://doi.org/10.1002/path.2145
Johnstone RM, Adam M, Hammond JR et al (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262:9412–9420
Peinado H, Alečković M, Lavotshkin S et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18:883–891. https://doi.org/10.1038/nm.2753
Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteome 73:1907–1920. https://doi.org/10.1016/j.jprot.2010.06.006
Valadi H, Ekström K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659. https://doi.org/10.1038/ncb1596
Krek A, Grün D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500. https://doi.org/10.1038/ng1536
Mittelbrunn M, Gutiérrez-Vázquez C, Villarroya-Beltri C et al (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2:282. https://doi.org/10.1038/ncomms1285
Lin J, Li J, Huang B et al (2015) Exosomes: novel biomarkers for clinical diagnosis. Sci World J 2015:1–8. https://doi.org/10.1155/2015/657086
Zhang J, Li S, Li L et al (2015) Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 13:17–24. https://doi.org/10.1016/j.gpb.2015.02.001
Skog J, Würdinger T, van Rijn S et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476. https://doi.org/10.1038/ncb1800
Ludwig A-K, Giebel B (2012) Exosomes: small vesicles participating in intercellular communication. Int J Biochem Cell Biol 44:11–15. https://doi.org/10.1016/j.biocel.2011.10.005
Schageman J, Zeringer E, Li M et al (2013) The complete exosome workflow solution: from isolation to characterization of RNA cargo. Biomed Res Int 2013:253957–253915. https://doi.org/10.1155/2013/253957
Jenjaroenpun P, Kremenska Y, Nair VM et al (2013) Characterization of RNA in exosomes secreted by human breast cancer cell lines using next-generation sequencing. PeerJ 1:e201. https://doi.org/10.7717/peerj.201
Lopez-Verrilli MA, Picou F, Court FA (2013) Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system. Glia 61:1795–1806. https://doi.org/10.1002/glia.22558
Segura E, Nicco C, Lombard B et al (2005) ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming. Blood 106:216–223. https://doi.org/10.1182/blood-2005-01-0220
van Niel G, Mallegol J, Bevilacqua C et al (2003) Intestinal epithelial exosomes carry MHC class II/peptides able to inform the immune system in mice. Gut 52:1690–1697
Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol Chapter 3:Unit 3.22–Un3.22.29. https://doi.org/10.1002/0471143030.cb0322s30
Liu Z, Jin Y-Q, Chen L et al (2015) Specific marker expression and cell state of Schwann cells during culture in vitro. PLoS One 10:e0123278. https://doi.org/10.1371/journal.pone.0123278
Acknowledgments
We wish to thank all the members of the Court Lab for their contributions to this protocol. This work was supported by the Center for Integrative Biology, Universidad Mayor, FONDECYT-1150766, Geroscience Center for Brain Health and Metabolism (FONDAP-15150012), Ring Initiative ACT1109, and Canada-Israel Health Research Initiative, jointly funded by the Canadian Institutes of Health Research; the Israel Science Foundation; the International Development Research Centre, Canada; and the Azrieli Foundation, Canada.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Science+Business Media, LLC
About this protocol
Cite this protocol
De Gregorio, C., Díaz, P., López-Leal, R., Manque, P., Court, F.A. (2018). Purification of Exosomes from Primary Schwann Cells, RNA Extraction, and Next-Generation Sequencing of Exosomal RNAs. In: Monje, P., Kim, H. (eds) Schwann Cells. Methods in Molecular Biology, vol 1739. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7649-2_19
Download citation
DOI: https://doi.org/10.1007/978-1-4939-7649-2_19
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-7648-5
Online ISBN: 978-1-4939-7649-2
eBook Packages: Springer Protocols