Schwann Cells pp 281-297 | Cite as

Preparation of Matrices of Variable Stiffness for the Study of Mechanotransduction in Schwann Cell Development

  • Mateusz M. Urbanski
  • Carmen V. Melendez-VasquezEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1739)


Extracellular matrix (ECM) elasticity may direct cellular differentiation and can be modeled in vitro using synthetic ECM-like substrates with defined elastic properties. However, the effectiveness of such approaches depends on the selection of a range of elasticity and ECM ligands that accurately model the relevant tissue. Here, we present a cell culture system than can be used to study Schwann cell differentiation on substrates which model the changes in mechanical ECM properties that occur during sciatic nerve development.

Key words

Schwann cells Cell culture Differentiation Mechanotransduction Extracellular matrix Sciatic nerve Elastic modulus Atomic force microscopy 


  1. 1.
    Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689. CrossRefPubMedGoogle Scholar
  2. 2.
    Wozniak MA, Chen CS (2009) Mechanotransduction in development: a growing role for contractility. Nat Rev Mol Cell Biol 10(1):34–43. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Janmey PA, Miller RT (2011) Mechanisms of mechanical signaling in development and disease. J Cell Sci 124(Pt 1):9–18. CrossRefPubMedGoogle Scholar
  4. 4.
    Handorf AM, Zhou Y, Halanski MA, Li WJ (2015) Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis 11(1):1–15. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tse JR, Engler AJ (2010) Preparation of hydrogel substrates with tunable mechanical properties. Curr Protoc Cell Biol Chapter 10:Unit 10.16. PubMedGoogle Scholar
  6. 6.
    Fischer RS, Gardel M, Ma X, Adelstein RS, Waterman CM (2009) Local cortical tension by myosin II guides 3D endothelial cell branching. Curr Biol 19(3):260–265. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Urbanski MM, Kingsbury L, Moussouros D, Kassim I, Mehjabeen S, Paknejad N, Melendez-Vasquez CV (2016) Myelinating glia differentiation is regulated by extracellular matrix elasticity. Sci Rep 6:33751. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Georges PC, Miller WJ, Meaney DF, Sawyer ES, Janmey PA (2006) Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophys J 90(8):3012–3018. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Levental I, Georges PC, Janmey PA (2007) Soft biological materials and their impact on cell function. Soft Matter 3(3):299–306. CrossRefGoogle Scholar
  10. 10.
    Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S (2011) Role of YAP/TAZ in mechanotransduction. Nature 474(7350):179–183. CrossRefPubMedGoogle Scholar
  11. 11.
    Poitelon Y, Lopez-Anido C, Catignas K, Berti C, Palmisano M, Williamson C, Ameroso D, Abiko K, Hwang Y, Gregorieff A, Wrana JL, Asmani M, Zhao R, Sim FJ, Wrabetz L, Svaren J, Feltri ML (2016) YAP and TAZ control peripheral myelination and the expression of laminin receptors in Schwann cells. Nat Neurosci 19(7):879–887. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Porter S, Clark MB, Glaser L, Bunge RP (1986) Schwann cells stimulated to proliferate in the absence of neurons retain full functional capability. J Neurosci 6(10):3070–3078PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Mateusz M. Urbanski
    • 1
  • Carmen V. Melendez-Vasquez
    • 1
    • 2
    Email author
  1. 1.Department of Biological SciencesHunter CollegeNew YorkUSA
  2. 2.The Graduate Center, City University of New YorkNew YorkUSA

Personalised recommendations