Schwann Cells pp 149-160 | Cite as

Human Induced Pluripotent Stem Cell-Derived Sensory Neurons for Fate Commitment of Bone Marrow Stromal Cell-Derived Schwann Cells

  • Sa Cai
  • Daisy K. Y. ShumEmail author
  • Ying-Shing ChanEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1739)


Here we describe the in vitro derivation of sensory neurons for use in effecting fate commitment of Schwann cell-like cells derived from human bone marrow stromal cells (hBMSCs). We adopt a novel combination of small molecules in an 8-day program that induces the differentiation of human induced pluripotent stem cells into sensory neurons. In co-cultures, the derived sensory neurons present contact-dependent cues to direct hBMSC-derived Schwann cell-like cells toward the Schwann cell fate. These derived human Schwann cells survive passaging and cryopreservation, retain marker expression despite withdrawal of glia-inducing medium and neuronal cues, demonstrate capacity for myelination, and therefore promise application in autologous transplantation and re-myelination therapy.

Key words

Human BMSC-derived Schwann cells Induced pluripotent stem cells Small-molecule inhibitors Sensory neurons Fate commitment 



This work was supported in part by the HKRGC-General Research Fund 777810, NSFC/RGC-Joint Research Scheme N_HKU741/11, Innovation and Technology Fund (100/10), SK Yee Medical Research Fund, National Natural Science Foundation of China (81000011, 81272080), and the Strategic Research Theme on Neuroscience of The University of Hong Kong.


  1. 1.
    Rodríguez FJ, Verdú E, Ceballos D, Navarro X (2000) Nerve guides seeded with autologous Schwann cells improve nerve regeneration. Exp Neurol 161:571–584CrossRefPubMedGoogle Scholar
  2. 2.
    Bachelin C, Lachapelle F, Girard C, Moissonnier P, Serguera-Lagache C, Mallet J et al (2005) Efficient myelin repair in the macaque spinal cord by autologous grafts of Schwann cells. Brain 128:540–549CrossRefPubMedGoogle Scholar
  3. 3.
    Cai S, Shea GK, Tsui AY, Chan YS, Shum DK (2011) Derivation of clinically applicable Schwann cells from bone marrow stromal cells for neural repair and regeneration. CNS Neurol Disord Drug Targets 10:500–508CrossRefPubMedGoogle Scholar
  4. 4.
    Jessen KR, Mirsky R, Arthur-Farraj P (2015) The role of cell plasticity in tissue repair: adaptive cellular reprogramming. Dev Cell 34:613–620CrossRefPubMedGoogle Scholar
  5. 5.
    Caddick J, Kingham PJ, Gardiner NJ, Wiberg M, Terenghi G (2006) Phenotypic and functional characteristics of mesenchymal stem cells differentiated along a Schwann cell lineage. Glia 54:840–849CrossRefPubMedGoogle Scholar
  6. 6.
    Brohlin M, Mahay D, Novikov LN, Terenghi G, Wiberg M, Shawcross SG et al (2009) Characterisation of human mesenchymal stem cells following differentiation into Schwann cell-like cells. Neurosci Res 64:41–49CrossRefPubMedGoogle Scholar
  7. 7.
    Shea GK, Tsui AY, Chan YS, Shum DK (2010) Bone marrow-derived Schwann cells achieve fate commitment—a prerequisite for remyelination therapy. Exp Neurol 224:448–458CrossRefPubMedGoogle Scholar
  8. 8.
    Ao Q, Fung CK, Tsui AY, Cai S, Zuo HC, Chan YS et al (2011) The regeneration of transected sciatic nerves of adult rats using chitosan nerve conduits seeded with bone marrow stromal cell-derived Schwann cells. Biomaterials 32:787–796CrossRefPubMedGoogle Scholar
  9. 9.
    Cai S, Chan YS, Shum DK (2014) Induced pluripotent stem cells and neurological disease modeling. Acta Physiol Sinica 66:55–66PubMedGoogle Scholar
  10. 10.
    Cai S, Han L, Ao Q, Chan YS, Shum DK (2017) Human iPS cell-derived sensory neurons for fate commitment of bone marrow-derived Schwann cells - implication for re-myelination therapy. Stem Cells Transl Med 6:369–381CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.School of Biomedical Sciences, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina

Personalised recommendations