Skip to main content

The General Linear Model: Theory and Practicalities in Brain Morphometric Analyses

  • Protocol
  • First Online:
Brain Morphometry

Part of the book series: Neuromethods ((NM,volume 136))

Abstract

The general linear model (GLM) is the statistical method of choice used in brain morphometric analyses because of its ability to incorporate a multitude of effects. This chapter starts by presenting the theory, focusing on modeling, and then goes on discussing multiple comparisons issues specific to voxel-based approaches. The end of the chapter discusses practicalities: variable selection and covariates of no interest. Researchers have often a multitude of demographic and behavioral measures they wish to use, and methods to select such variables are presented. We end with a note of caution as the GLM can only reveal covariations between the brain and behavior, and prediction and causation mandate specific designs and analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A polynomial function is a function, such as a quadratic, a cubic, a quartic, and so on, involving only nonnegative integer powers of x.

  2. 2.

    In morphometric analyses, the total intracranial volume (or related measurement) is typically accounted for, either in the model or in the data. Here the hippocampal volume is normalized to the total brain volume—this transformation is mandatory as bigger heads give bigger volume and vice versa, and bias in a sample can lead to spurious results.

References

  1. Christensen R (2002) Plane answers to complex questions. The theory of linear models, 3rd edn. Springer, New-York

    Book  Google Scholar 

  2. Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. NeuroImage 11:805–821

    Article  CAS  PubMed  Google Scholar 

  3. Smith SM, Jenkinson M, Johansen-Berg H et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31:1487–1505

    Article  PubMed  Google Scholar 

  4. Frisoni GB, Ganzola R, Canu E et al (2008) Mapping local hippocampal changes in Alzheimer’s disease and normal ageing with MRI at 3 Tesla. Brain J Neurol 131:3266–3276

    Article  Google Scholar 

  5. Worsley KJ, Marrett S, Neelin P et al (1996) A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp 4:58–73

    Article  CAS  PubMed  Google Scholar 

  6. Hayasaka S, Phan KL, Liberzon I et al (2004) Nonstationary cluster-size inference with random field and permutation methods. NeuroImage 22:676–687

    Article  PubMed  Google Scholar 

  7. Smith S, Nichols T (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage 44:83–98

    Article  PubMed  Google Scholar 

  8. Salimi-Khorshidi G, Smith SM, Nichols TE (2009) Adjusting the neuroimaging statistical inferences for nonstationarity. Med Image Comput Comput Assist Interv 12. Springer:992–999

    PubMed  Google Scholar 

  9. Salimi-Khorshidi G, Smith SM, Nichols TE (2011) Adjusting the effect of nonstationarity in cluster-based and TFCE inference. NeuroImage 54:2006–2019

    Article  PubMed  Google Scholar 

  10. Ridgway GR, Henley SMD, Rohrer JD et al (2008) Ten simple rules for reporting voxel-based morphometry studies. NeuroImage 40:1429–1435

    Article  PubMed  Google Scholar 

  11. Huang L, Rattner A, Liu H, Nathans J (2013) How to draw the line in biomedical research. elife 2:e00638

    PubMed  PubMed Central  Google Scholar 

  12. Salmond CH, Ashburner J, Vargha-Khadem F et al (2002) Distributional assumptions in voxel-based morphometry. NeuroImage 17:1027–1030

    Article  CAS  PubMed  Google Scholar 

  13. Scarpazza C, Sartori G, De Simone MS, Mechelli A (2013) When the single matters more than the group: very high false positive rates in single case voxel based morphometry. NeuroImage 70:175–188

    Article  CAS  PubMed  Google Scholar 

  14. Sink KM, Craft S, Smith SC et al (2015) Montreal cognitive assessment and modified mini mental state examination in African Americans. J Aging Res 2015:872018

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hutcheon JA, Chiolero A, Hanley JA (2010) Random measurement error and regression dilution bias. BMJ 340:c2289

    Article  PubMed  Google Scholar 

  16. Kraha A, Turner H, Nimon K et al (2012) Tools to support interpreting multiple regression in the face of multicollinearity. Front Psychol 3:44

    Article  PubMed  PubMed Central  Google Scholar 

  17. Malone IB, Leung KK, Clegg S et al (2015) Accurate automatic estimation of total intracranial volume: a nuisance variable with less nuisance. NeuroImage 104:366–372

    Article  PubMed  PubMed Central  Google Scholar 

  18. Henley SMD, Ridgway GR, Scahill RI et al (2010) Pitfalls in the use of voxel-based morphometry as a biomarker: examples from huntington disease. AJNR Am J Neuroradiol 31:711–719

    Article  CAS  PubMed  Google Scholar 

  19. Peelle JE, Cusack R, Henson RNA (2012) Adjusting for global effects in voxel-based morphometry: gray matter decline in normal aging. NeuroImage 60:1503–1516

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tu Y-K, Gunnell D, Gilthorpe MS (2008) Simpson’s paradox, Lord’s paradox, and suppression effects are the same phenomenon--the reversal paradox. Emerg Themes Epidemiol 5:2

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pernet CR, Poline J, Demonet J, Rousselet GA (2009) Brain classification reveals the right cerebellum as the best biomarker of dyslexia. BMC Neurosci 10:67

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lo A, Chernoff H, Zheng T, Lo S-H (2015) Why significant variables aren’t automatically good predictors. Proc Natl Acad Sci 112:13892–13897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Thank you to Ged Ridgway for providing useful references related to variables of no interest and reviewing the manuscript and to David Raffelt for pointing out difference between looking at voxel content (VBM/TBSSS) and morphometry per se (looking at shapes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril R. Pernet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pernet, C.R. (2018). The General Linear Model: Theory and Practicalities in Brain Morphometric Analyses. In: Spalletta, G., Piras, F., Gili, T. (eds) Brain Morphometry. Neuromethods, vol 136. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7647-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7647-8_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7645-4

  • Online ISBN: 978-1-4939-7647-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics