Skip to main content

Convolutional Neural Networks for Rapid and Simultaneous Brain Extraction and Tissue Segmentation

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 136))

Abstract

Convolutional neural networks are poised to become a standard technology in neuroimage analysis. This general purpose framework learns both low-level and high-level features directly from images, making them ideal for image segmentation. To highlight the potential of these tools, we present a novel convolutional-deconvolutional network architecture designed for efficient three-dimensional, supervised brain segmentation. We detail the problem definition, network design, evaluation and interpretation underlying this effort. We also provide evidence that such networks can achieve accuracy in a matter of seconds that rivals what traditional methods may take over an hour to compute.

Dr. Avants recently became a Biogen employee.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. von Economo CF, Koskinas GN (1925) Die cytoarchitektonik der hirnrinde des erwachsenen menschen. Springer, Wien

    Google Scholar 

  2. Mendrik AM, Vincken KL, Kuijf HJ et al (2015) MRBrainS challenge: online evaluation framework for brain image segmentation in 3T MRI scans. Comput Intell Neurosci 2015:813696

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tustison NJ, Cook PA, Klein A et al (2014) Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements. NeuroImage 99:166–179

    Article  PubMed  Google Scholar 

  4. Wang H, Suh JW, Das SR et al (2013) Multi-atlas segmentation with joint label fusion. IEEE Trans Pattern Anal Mach Intell 35:611–623

    Article  PubMed  Google Scholar 

  5. Pustina D, Coslett HB, Turkeltaub PE et al (2016) Automated segmentation of chronic stroke lesions using LINDA: lesion identification with neighborhood data analysis. Hum Brain Mapp 37:1405–1421

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ashburner J (2012) SPM: a history. NeuroImage 62:791–800

    Article  PubMed  Google Scholar 

  7. Commowick O, Warfield SK (2010) Incorporating priors on expert performance parameters for segmentation validation and label fusion: a maximum a posteriori STAPLE. Med Image Comput Comput Assist Interv 13:25–32

    PubMed  PubMed Central  Google Scholar 

  8. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444

    Article  CAS  PubMed  Google Scholar 

  9. He K, Zhang X, Ren S et al (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. arXiv:1502.01852

  10. Schoenick C, Clark P, Tafjord O et al (2016) Moving beyond the turing test with the Allen AI science challenge. arXiv:1604.04315

  11. Mordvintsev A, Olah C, Tyka M (2015) Inceptionism: going deeper into neural networks. Google Research Blog. Accessed 20 June 2014

    Google Scholar 

  12. Santoro A, Bartunov S, Botvinick M et al (2016) One-shot learning with memory-augmented neural networks. arXiv:1605.06065

  13. Wu Y, Schuster M, Chen Z et al (2016) Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv:1609.08144

  14. Goldsborough P (2016) A tour of tensorflow. arXiv:1610.01178

  15. Le QV, Ranzato M, Monga R et al (2011) Building high-level features using large scale unsupervised learning. International Conference in Machine Learning, Edinburgh, Scotland

    Google Scholar 

  16. Arganda-Carreras I, Turaga SC, Berger DR et al (2015) Crowdsourcing the creation of image segmentation algorithms for connectomics. Front Neuroanat 9:142

    Article  PubMed  PubMed Central  Google Scholar 

  17. Moeskops P, Viergever MA, Mendrik AM et al (2016) Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans Med Imaging 35:1252–1261

    Article  PubMed  Google Scholar 

  18. Zhang W, Li R, Deng H et al (2015) Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage 108:214–224

    Article  PubMed  PubMed Central  Google Scholar 

  19. Choi H, Jin KH (2016) Fast and robust segmentation of the striatum using deep convolutional neural networks. J Neurosci Methods 274:146–153

    Article  PubMed  Google Scholar 

  20. Korfiatis P, Kline TL, Erickson BJ (2016) Automated segmentation of hyperintense regions in FLAIR MRI using deep learning. Tomography 2:334–340

    Article  PubMed  PubMed Central  Google Scholar 

  21. Havaei M, Davy A, Warde-Farley D et al (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31

    Article  PubMed  Google Scholar 

  22. Xing F, Xie Y, Yang L (2016) An automatic learning-based framework for robust nucleus segmentation. IEEE Trans Med Imaging 35:550–566

    Article  PubMed  Google Scholar 

  23. Kamnitsas K, Ledig C, Newcombe VFJ et al (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78

    Article  PubMed  Google Scholar 

  24. Zeiler MD, Krishnan D, Taylor GW et al (2010) Deconvolutional networks. In: Computer vision and pattern recognition (cvpr), 2010 ieee conference on, pp 2528–2535 IEEE

    Google Scholar 

  25. Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: European conference on computer vision, pp 818–833 Springer

    Google Scholar 

  26. Noh H, Hong S, Han B (2015) Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE international conference on computer vision, pp. 1520–1528

    Google Scholar 

  27. Brosch T, Tang LYW, Yoo Y et al (2016) Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans Med Imaging 35:1229–1239

    Article  PubMed  Google Scholar 

  28. Janowczyk A, Madabhushi A (2016) Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases. J Pathol Inform 7:29

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lu H, Xu F, Rodrigue KM et al (2011) Alterations in cerebral metabolic rate and blood supply across the adult lifespan. Cereb Cortex 21:1426–1434

    Article  PubMed  Google Scholar 

  30. Avants BB, Tustison NJ, Wu J et al (2011) An open source multivariate framework for n-tissue segmentation with evaluation on public data. Neuroinformatics 9:381–400

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tustison NJ, Avants BB, Cook PA et al (2010) N4ITK: improved n3 bias correction. IEEE Trans Med Imaging 29:1310–1320

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tustison NJ, Shrinidhi KL, Wintermark M et al (2015) Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics 13:209–225

    Article  PubMed  Google Scholar 

  33. Franke K, Ziegler G, Klöppel S et al (2010) Estimating the age of healthy subjects from t1-weighted MRI scans using kernel methods: exploring the influence of various parameters. NeuroImage 50:883–892

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by K01 ES025432-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas C. Cullen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cullen, N.C., Avants, B.B. (2018). Convolutional Neural Networks for Rapid and Simultaneous Brain Extraction and Tissue Segmentation. In: Spalletta, G., Piras, F., Gili, T. (eds) Brain Morphometry. Neuromethods, vol 136. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7647-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7647-8_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7645-4

  • Online ISBN: 978-1-4939-7647-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics