Skip to main content

Multicenter Studies of Brain Morphometry

  • Protocol
  • First Online:
Brain Morphometry

Part of the book series: Neuromethods ((NM,volume 136))

  • 1293 Accesses

Abstract

Methods enabling the characterization of brain morphometry have evolved exponentially in the last decades and have been shown important clinical applications. First MRI studies usually included a low number of subjects, but later on, it has become recognized that efforts from different research centers can be pooled by combining data acquisition and analyses toward large-scale collaborative projects. Large-scale studies have a number of advantages, with the most intuitive being the increase in the number of enrolled subjects and, consequently, statistical power. However, there are also a number of caveats including (but not limited to) the high cost in terms of human and economic resources and the intrinsic variation of acquired data linked to the different MRI technologies.

This chapter depicts the different categories of large-scale studies, according to the level of control and planning on data acquisition and analyses. It also describes the most relevant multicenter studies, from the first precursor consortia in the early 1990s to the most recent worldwide multimodal collaborative efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://fcon_1000.projects.nitrc.org/indi/CoRR/html/index.html.

  2. 2.

    One Mind for Research. In http://www.onemind.org/Our-Solutions/Gemini.

  3. 3.

    http://enigma.ini.usc.edu/.

  4. 4.

    https://surfer.nmr.mgh.harvard.edu/.

  5. 5.

    https://cran.r-project.org/.

  6. 6.

    http://www.humanconnectome.org/data/.

References

  1. Giedd JN, Blumenthal J, Jeffries NO et al (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2:861–863. https://doi.org/10.1038/13158

    Article  CAS  PubMed  Google Scholar 

  2. Good CD, Johnsrude IS, Ashburner J et al (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage 14:21–36. https://doi.org/10.1006/nimg.2001.0786

    Article  CAS  PubMed  Google Scholar 

  3. Jernigan TL, Salmon DP, Butters N, Hesselink JR (1991) Cerebral structure on MRI, part II: specific changes in Alzheimer’s and Huntington’s diseases. Biol Psychiatry 29:68–81. https://doi.org/10.1016/0006-3223(91)90211-4

    Article  CAS  PubMed  Google Scholar 

  4. Gorell J, Ordidge R, Brown G et al (1995) Increased iron-related MRI contrast in the substantia nigra in Parkinson’s disease. Neurology 45:1138–1143. https://doi.org/10.1212/WNL.45.6.1138

    Article  CAS  PubMed  Google Scholar 

  5. Helmick KM, Spells CA, Malik SZ et al (2015) Traumatic brain injury in the US military: epidemiology and key clinical and research programs. Brain Imaging Behav 9:358–366. https://doi.org/10.1007/s11682-015-9399-z

    Article  PubMed  Google Scholar 

  6. Stebbins GT, Nyenhuis DL, Wang C et al (2008) Gray matter atrophy in patients with ischemic stroke with cognitive impairment. Stroke 39:785–793. https://doi.org/10.1161/STROKEAHA.107.507392

    Article  PubMed  Google Scholar 

  7. Piven J, Arndt S, Bailey J et al (1995) An MRI study of brain size in autism. Am J Psychiatry 152:1145–1149. https://doi.org/10.1176/ajp.152.8.1145

    Article  CAS  PubMed  Google Scholar 

  8. Bremner JD, Narayan M, Anderson ER et al (2000) Hippocampal volume reduction in major depression. Am J Psychiatry 157:115–118. https://doi.org/10.1176/ajp.157.1.115

    Article  CAS  PubMed  Google Scholar 

  9. Kellner CH, Jolley RR, Holgate RC et al (1991) Brain MRI in obsessive-compulsive disorder. Psychiatry Res 36:45–49

    Article  CAS  PubMed  Google Scholar 

  10. Kuzniecky R, Murro A, King D et al (1993) Magnetic resonance imaging in childhood intractable partial epilepsies: pathologic correlations. Neurology 43:681–687

    Article  CAS  PubMed  Google Scholar 

  11. Andreasen NC, Ehrhardt JC, Swayze VW et al (1990) Magnetic resonance imaging of the brain in schizophrenia. The pathophysiologic significance of structural abnormalities. Arch Gen Psychiatry 47:35–44

    Article  CAS  PubMed  Google Scholar 

  12. Desmond JE, Glover GH (2002) Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses. J Neurosci Methods 118:115–128. https://doi.org/10.1016/S0165-0270(02)00121-8

    Article  PubMed  Google Scholar 

  13. Friston KJ, Holmes AP, Poline JB et al (1995) Analysis of fMRI time-series revisited. NeuroImage 2:45–53. https://doi.org/10.1006/nimg.1995.1007

    Article  CAS  PubMed  Google Scholar 

  14. Smith SM, Jenkinson M, Woolrich MW et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23:S208–S219. https://doi.org/10.1016/j.neuroimage.2004.07.051

    Article  PubMed  Google Scholar 

  15. Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. NeuroImage 9:195–207

    Article  CAS  PubMed  Google Scholar 

  16. Mazziotta JC, Toga AW, Evans A et al (1995) A probabilistic atlas of the human brain: theory and rationale for its development. The international consortium for brain mapping (ICBM). NeuroImage 2:89–101. https://doi.org/10.1006/nimg.1995.1012

    Article  CAS  PubMed  Google Scholar 

  17. Amunts K, Schleicher A, Bürgel U et al (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol 412:319–341. https://doi.org/10.1002/(SICI)1096-9861(19990920)412:2<319::AID-CNE10>3.0.CO;2-7

    Article  CAS  PubMed  Google Scholar 

  18. Evans AC, Collins DL, Milner B (1992) An MRI- based stereotactic Atlas from 250 young normal subjects. In: Soc. Neurosci. Abstr. p 408

    Google Scholar 

  19. Ashburner J, Andersson JL, Friston KJ (1999) High-dimensional image registration using symmetric priors. NeuroImage 9:619–628. https://doi.org/10.1006/nimg.1999.0437

    Article  CAS  PubMed  Google Scholar 

  20. Van Horn JD, Toga AW (2009) Multisite neuroimaging trials. Curr Opin Neurol 22:370–378. https://doi.org/10.1097/WCO.0b013e32832d92de

    Article  PubMed  PubMed Central  Google Scholar 

  21. Glover GH, Mueller BA, Turner JA et al (2012) Function biomedical informatics research network recommendations for prospective multicenter functional MRI studies. J Magn Reson Imaging 36:39–54. https://doi.org/10.1002/jmri.23572

    Article  PubMed  PubMed Central  Google Scholar 

  22. Friedman L, Glover GH, The FBIRN Consortium (2006) Reducing interscanner variability of activation in a multicenter fMRI study: controlling for signal-to-fluctuation-noise-ratio (SFNR) differences. NeuroImage 33:471–481. https://doi.org/10.1016/j.neuroimage.2006.07.012

    Article  PubMed  Google Scholar 

  23. Deoni SCL, Williams SCR, Jezzard P et al (2008) Standardized structural magnetic resonance imaging in multicentre studies using quantitative T1 and T2 imaging at 1.5 T. NeuroImage 40:662–671. https://doi.org/10.1016/j.neuroimage.2007.11.052

    Article  PubMed  Google Scholar 

  24. Zhou Z, Liu BJ (2005) HIPAA compliant auditing system for medical images. Comput Med Imaging Graph 29:235–241. https://doi.org/10.1016/j.compmedimag.2004.09.009

    Article  PubMed  Google Scholar 

  25. Mueller SG, Weiner MW, Thal LJ et al (2005) Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimers Dement 1:55–66. https://doi.org/10.1016/j.jalz.2005.06.003

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen J, Liu J, Calhoun VD et al (2014) Exploration of scanning effects in multi-site structural MRI studies. J Neurosci Methods 230:37–50. https://doi.org/10.1016/j.jneumeth.2014.04.023

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fischl B, Salat DH, Busa E et al (2002) Whole brain segmentation. Neuron 33:341–355. https://doi.org/10.1016/S0896-6273(02)00569-X

    Article  CAS  PubMed  Google Scholar 

  28. Hoogman M, Bralten J, Hibar DP et al (2017) Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. Lancet Psychiatry 4:310–319. https://doi.org/10.1016/S2215-0366(17)30049-4

    Article  PubMed  Google Scholar 

  29. Hibar DP, Westlye LT, van Erp TGM et al (2016) Subcortical volumetric abnormalities in bipolar disorder. Mol Psychiatry 21:1710–1716. https://doi.org/10.1038/mp.2015.227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hibar DP, Westlye LT, Doan NT et al (2017) Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Mol Psychiatry. https://doi.org/10.1038/mp.2017.73

  31. Boedhoe PSW, Schmaal L, Abe Y et al (2017) Distinct subcortical volume alterations in pediatric and adult OCD: a worldwide meta- and mega-analysis. Am J Psychiatry 174:60–70. https://doi.org/10.1176/appi.ajp.2016.16020201

    Article  PubMed  Google Scholar 

  32. van Erp TGM, Hibar DP, Rasmussen JM et al (2016) Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry 21:547–553. https://doi.org/10.1038/mp.2015.63

    Article  PubMed  Google Scholar 

  33. Walton E, Hibar DP, van Erp TGM et al (2017) Positive symptoms associate with cortical thinning in the superior temporal gyrus via the ENIGMA schizophrenia consortium. Acta Psychiatr Scand 135:439–447. https://doi.org/10.1111/acps.12718

    Article  CAS  PubMed  Google Scholar 

  34. Schmaal L, Veltman DJ, van Erp TGM et al (2015) Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group. Mol Psychiatry:1–7. https://doi.org/10.1038/mp.2015.69

  35. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  CAS  PubMed  Google Scholar 

  36. Reuillon R, Leclaire M, Rey-Coyrehourcq S (2013) OpenMOLE, a workflow engine specifically tailored for the distributed exploration of simulation models. Futur Gener Comput Syst 29:1981–1990. https://doi.org/10.1016/j.future.2013.05.003

    Article  Google Scholar 

  37. Passerat-Palmbach J, Reuillon R, Leclaire M et al (2017) Reproducible large-scale neuroimaging studies with the OpenMOLE Workflow Management System. Front Neuroinform. https://doi.org/10.3389/fninf.2017.00021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Piras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Piras, F., Iorio, M., Vecchio, D., Gili, T., Piras, F., Spalletta, G. (2018). Multicenter Studies of Brain Morphometry. In: Spalletta, G., Piras, F., Gili, T. (eds) Brain Morphometry. Neuromethods, vol 136. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7647-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7647-8_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7645-4

  • Online ISBN: 978-1-4939-7647-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics