Skip to main content

Transcriptional Profiling Mycobacterium tuberculosis from Patient Sputa

  • Protocol
  • First Online:
Antibiotic Resistance Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1736))

Abstract

The emergence of drug resistance threatens to destroy tuberculosis control programs worldwide, with resistance to all first-line drugs and most second-line drugs detected. Drug tolerance (or phenotypic drug resistance) is also likely to be clinically relevant over the 6-month long standard treatment for drug-sensitive tuberculosis. Transcriptional profiling the response of Mycobacterium tuberculosis to antimicrobial drugs offers a novel interpretation of drug efficacy and mycobacterial drug-susceptibility that likely varies in dynamic microenvironments, such as the lung. This chapter describes the noninvasive sampling of tuberculous sputa and techniques for mRNA profiling M. tb bacilli during patient therapy to characterize real-world drug actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boshoff HI, Myers TG, Copp BR, McNeil MR, Wilson MA, Barry CE III (2004) The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J Biol Chem 279(38):40174–40184

    Article  CAS  PubMed  Google Scholar 

  2. Waddell SJ, Stabler RA, Laing K, Kremer L, Reynolds RC, Besra GS (2004) The use of microarray analysis to determine the gene expression profiles of Mycobacterium tuberculosis in response to anti-bacterial compounds. Tuberculosis (Edinb) 84(3–4):263–274

    Article  Google Scholar 

  3. Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C, Schoolnik GK (2003) Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198(5):693–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rohde KH, Veiga DF, Caldwell S, Balazsi G, Russell DG (2012) Linking the transcriptional profiles and the physiological states of Mycobacterium tuberculosis during an extended intracellular infection. PLoS Pathog 8(6):e1002769. https://doi.org/10.1371/journal.ppat.1002769. PPATHOGENS-D-11-02225 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tailleux L, Waddell SJ, Pelizzola M, Mortellaro A, Withers M, Tanne A, Castagnoli PR, Gicquel B, Stoker NG, Butcher PD, Foti M, Neyrolles O (2008) Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages. PLoS One 3(1):e1403

    Article  PubMed  PubMed Central  Google Scholar 

  6. Talaat AM, Ward SK, Wu CW, Rondon E, Tavano C, Bannantine JP, Lyons R, Johnston SA (2007) Mycobacterial bacilli are metabolically active during chronic tuberculosis in murine lungs: insights from genome-wide transcriptional profiling. J Bacteriol 189(11):4265–4274. https://doi.org/10.1128/JB.00011-07. JB.00011-07 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Garton NJ, Waddell SJ, Sherratt AL, Lee SM, Smith RJ, Senner C, Hinds J, Rajakumar K, Adegbola RA, Besra GS, Butcher PD, Barer MR (2008) Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum. PLoS Med 5(4):e75

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rachman H, Strong M, Ulrichs T, Grode L, Schuchhardt J, Mollenkopf H, Kosmiadi GA, Eisenberg D, Kaufmann SH (2006) Unique transcriptome signature of Mycobacterium tuberculosis in pulmonary tuberculosis. Infect Immun 74(2):1233–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Walter ND, Dolganov GM, Garcia BJ, Worodria W, Andama A, Musisi E, Ayakaka I, Van TT, Voskuil MI, de Jong BC, Davidson RM, Fingerlin TE, Kechris K, Palmer C, Nahid P, Daley CL, Geraci M, Huang L, Cattamanchi A, Strong M, Schoolnik GK, Davis JL (2015) Transcriptional adaptation of drug-tolerant Mycobacterium tuberculosis during treatment of human tuberculosis. J Infect Dis. https://doi.org/10.1093/infdis/jiv149. jiv149 [pii]

  10. Honeyborne I, McHugh TD, Kuittinen I, Cichonska A, Evangelopoulos D, Ronacher K, van Helden PD, Gillespie SH, Fernandez-Reyes D, Walzl G, Rousu J, Butcher PD, Waddell SJ (2016) Profiling persistent tubercule bacilli from patient sputa during therapy predicts early drug efficacy. BMC Med 14:68. https://doi.org/10.1186/s12916-016-0609-3

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chatterjee A, Saranath D, Bhatter P, Mistry N (2013) Global transcriptional profiling of longitudinal clinical isolates of Mycobacterium tuberculosis exhibiting rapid accumulation of drug resistance. PLoS One 8(1):e54717. https://doi.org/10.1371/journal.pone.0054717. PONE-D-12-24527 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Waddell SJ, Laing K, Senner C, Butcher PD (2008) Microarray analysis of defined Mycobacterium tuberculosis populations using RNA amplification strategies. BMC Genomics 9(1):94

    Article  PubMed  PubMed Central  Google Scholar 

  13. Waddell SJ, Butcher PD (2010) Use of DNA arrays to study transcriptional responses to antimycobacterial compounds. Methods Mol Biol 642:75–91. https://doi.org/10.1007/978-1-60327-279-7_6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

L.M.W. was funded by a Brazilian government agency CAPES (Coordination for the Improvement of Higher Education Personnel) PhD visiting fellowship [99999.005648/2014-09]. K.A.G. acknowledges funding from the Wellcome Trust for the Bacterial Microarray Group at St. George’s [062511, 080039, and 086547]. S.J.W. was supported by the Wellcome Trust [204538/Z/16/Z] and the PreDiCT-TB consortium (http://www.predict-tb.eu) which is funded from the Innovative Medicines Initiative Joint Undertaking under grant agreement No 115337, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in-kind contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon J. Waddell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wildner, L.M., Gould, K.A., Waddell, S.J. (2018). Transcriptional Profiling Mycobacterium tuberculosis from Patient Sputa. In: Gillespie, S. (eds) Antibiotic Resistance Protocols. Methods in Molecular Biology, vol 1736. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7638-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7638-6_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7636-2

  • Online ISBN: 978-1-4939-7638-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics