Skip to main content

Assessment of External Guide Sequences’ (EGS) Efficiency as Inducers of RNase P-Mediated Cleavage of mRNA Target Molecules

  • Protocol
  • First Online:
Bacterial Regulatory RNA

Abstract

RNase P is a ribozyme consisting of a catalytic RNA molecule and, depending on the organism, one or more cofactor proteins. It was initially identified as the enzyme that mediates cleavage of precursor tRNAs at the 5′-end termini to generate the mature tRNAs. An important characteristic of RNase P is that its specificity depends on the structure rather than the sequence of the RNA substrate. Any RNA species that interacts with an antisense molecule (called external guide sequence, EGS) and forms the appropriate structure can be cleaved by RNase P. This property is the basis for EGS technology, an antisense methodology for inhibiting gene expression by eliciting RNase P-mediated cleavage of a target mRNA molecule. EGS technology is being developed to design therapies against a large variety of diseases. An essential milestone in developing EGSs as therapies is the assessment of the efficiency of antisense molecules to induce cleavage of the target mRNA and evaluate their effect in vivo. Here, we describe simple protocols to test the ability of EGSs to induce cleavage of a target mRNA in vitro and to induce a phenotypic change in growing cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McClorey G, Wood MJ (2015) An overview of the clinical application of antisense oligonucleotides for RNA-targeting therapies. Curr Opin Pharmacol 24:52–58. https://doi.org/10.1016/j.coph.2015.07.005

    Article  CAS  PubMed  Google Scholar 

  2. Marwick C (1998) First “antisense” drug will treat CMV retinitis. JAMA 280(10):871

    Article  CAS  PubMed  Google Scholar 

  3. Ricotta DN, Frishman W (2012) Mipomersen: a safe and effective antisense therapy adjunct to statins in patients with hypercholesterolemia. Cardiol Rev 20(2):90–95. https://doi.org/10.1097/CRD.0b013e31823424be

    PubMed  Google Scholar 

  4. Lim KR, Maruyama R, Yokota T (2017) Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Des Devel Ther 11:533–545. https://doi.org/10.2147/DDDT.S97635

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chiriboga CA, Swoboda KJ, Darras BT, Iannaccone ST, Montes J, De Vivo DC, Norris DA, Bennett CF, Bishop KM (2016) Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy. Neurology 86(10):890–897. https://doi.org/10.1212/WNL.0000000000002445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Burnett JC, Rossi JJ (2012) RNA-based therapeutics: current progress and future prospects. Chem Biol 19(1):60–71. https://doi.org/10.1016/j.chembiol.2011.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sridharan K, Gogtay NJ (2016) Therapeutic nucleic acids: current clinical status. Br J Clin Pharmacol 82(3):659–672. https://doi.org/10.1111/bcp.12987

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kole R, Krainer AR, Altman S (2012) RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 11(2):125–140. https://doi.org/10.1038/nrd3625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rasmussen LC, Sperling-Petersen HU, Mortensen KK (2007) Hitting bacteria at the heart of the central dogma: sequence-specific inhibition. Microb Cell Fact 6:24. https://doi.org/10.1186/1475-2859-6-24

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sarno R, Ha H, Weinsetel N, Tolmasky ME (2003) Inhibition of aminoglycoside 6′-N-acetyltransferase type Ib-mediated amikacin resistance by antisense oligodeoxynucleotides. Antimicrob Agents Chemother 47(10):3296–3304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Davies-Sala C, Soler-Bistue A, Bonomo RA, Zorreguieta A, Tolmasky ME (2015) External guide sequence technology: a path to development of novel antimicrobial therapeutics. Ann N Y Acad Sci 1354:98–110. https://doi.org/10.1111/nyas.12755

    Article  CAS  PubMed  Google Scholar 

  12. Woodford N, Wareham DW (2009) Tackling antibiotic resistance: a dose of common antisense? J Antimicrob Chemother 63(2):225–229. https://doi.org/10.1093/jac/dkn467

    Article  CAS  PubMed  Google Scholar 

  13. Matzov D, Bashan A, Yonath A (2017) A bright future for antibiotics? Annu Rev Biochem 86:567–583. https://doi.org/10.1146/annurev-biochem-061516-044617

    Article  CAS  PubMed  Google Scholar 

  14. Lundblad EW, Altman S (2010) Inhibition of gene expression by RNase P. N Biotechnol 27(3):212–221. https://doi.org/10.1016/j.nbt.2010.03.003

    Article  CAS  PubMed  Google Scholar 

  15. Davies Sala C, Soler-Bistue AJ, Korprapun L, Zorreguieta A, Tolmasky ME (2012) Inhibition of cell division induced by external guide sequences (EGS technology) targeting ftsZ. PLoS One 7(10):e47690. https://doi.org/10.1371/journal.pone.0047690

    Article  Google Scholar 

  16. Guerrier-Takada C, Salavati R, Altman S (1997) Phenotypic conversion of drug-resistant bacteria to drug sensitivity. Proc Natl Acad Sci U S A 94(16):8468–8472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shen N, Ko JH, Xiao G, Wesolowski D, Shan G, Geller B, Izadjoo M, Altman S (2009) Inactivation of expression of several genes in a variety of bacterial species by EGS technology. Proc Natl Acad Sci U S A 106(20):8163–8168. https://doi.org/10.1073/pnas.0903491106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Soler Bistue AJ, Ha H, Sarno R, Don M, Zorreguieta A, Tolmasky ME (2007) External guide sequences targeting the aac(6′)-Ib mRNA induce inhibition of amikacin resistance. Antimicrob Agents Chemother 51(6):1918–1925. https://doi.org/10.1128/AAC.01500-06

    Article  CAS  PubMed  Google Scholar 

  19. Soler Bistue AJ, Martin FA, Vozza N, Ha H, Joaquin JC, Zorreguieta A, Tolmasky ME (2009) Inhibition of aac(6′)-Ib-mediated amikacin resistance by nuclease-resistant external guide sequences in bacteria. Proc Natl Acad Sci U S A 106(32):13230–13235. https://doi.org/10.1073/pnas.0906529106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Altman S (2011) Ribonuclease P. Philos Trans R Soc Lond B Biol Sci 366(1580):2936–2941. https://doi.org/10.1098/rstb.2011.0142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Forster AC, Altman S (1990) External guide sequences for an RNA enzyme. Science 249(4970):783–786

    Article  CAS  PubMed  Google Scholar 

  22. Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35(3 Pt 2):849–857

    Article  CAS  PubMed  Google Scholar 

  23. Gopalan V, Vioque A, Altman S (2002) RNase P: variations and uses. J Biol Chem 277(9):6759–6762. https://doi.org/10.1074/jbc.R100067200

    Article  CAS  PubMed  Google Scholar 

  24. Deleavey GF, Damha MJ (2012) Designing chemically modified oligonucleotides for targeted gene silencing. Chem Biol 19(8):937–954. https://doi.org/10.1016/j.chembiol.2012.07.011

    Article  CAS  PubMed  Google Scholar 

  25. Kurreck J (2003) Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 270(8):1628–1644

    Article  CAS  PubMed  Google Scholar 

  26. Jackson A, Jani S, Sala CD, Soler-Bistue AJ, Zorreguieta A, Tolmasky ME (2016) Assessment of configurations and chemistries of bridged nucleic acids-containing oligomers as external guide sequences: a methodology for inhibition of expression of antibiotic resistance genes. Biol Methods Protoc 1(1):bpw001. https://doi.org/10.1093/biomethods/bpw001

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sawyer AJ, Wesolowski D, Gandotra N, Stojadinovic A, Izadjoo M, Altman S, Kyriakides TR (2013) A peptide-morpholino oligomer conjugate targeting Staphylococcus aureus gyrA mRNA improves healing in an infected mouse cutaneous wound model. Int J Pharm 453(2):651–655. https://doi.org/10.1016/j.ijpharm.2013.05.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lin J, Nishino K, Roberts MC, Tolmasky M, Aminov RI, Zhang L (2015) Mechanisms of antibiotic resistance. Front Microbiol 6:34. https://doi.org/10.3389/fmicb.2015.00034

    PubMed  PubMed Central  Google Scholar 

  29. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48(1):1–12. https://doi.org/10.1086/595011

    Article  PubMed  Google Scholar 

  30. Ramirez MS, Traglia GM, Lin D, Tran T, Tolmasky ME (2014) Plasmid-mediated antibiotic resistance and virulence in Gram-negatives: the Klebsiella pneumoniae paradigm. Microbiol Spectr 2(5):1

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Li Y, Guerrier-Takada C, Altman S (1992) Targeted cleavage of mRNA in vitro by RNase P from Escherichia coli. Proc Natl Acad Sci U S A 89(8):3185–3189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tolmasky ME (2007) Aminoglycoside-modifying enzymes: characteristics, localization, and dissemination. In: Bonomo R, Tolmasky ME (eds) Enzyme-mediated resistance to antibiotics: mechanisms, dissemination, and prospects for inhibition. ASM Press, Washington, DC, pp 35–52

    Chapter  Google Scholar 

  33. Ramirez MS, Nikolaidis N, Tolmasky ME (2013) Rise and dissemination of aminoglycoside resistance: the aac(6′)-Ib paradigm. Front Microbiol 4:121. https://doi.org/10.3389/fmicb.2013.00121

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tolmasky ME, Chamorro RM, Crosa JH, Marini PM (1988) Transposon-mediated amikacin resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother 32(9):1416–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ramirez MS, Tolmasky ME (2010) Aminoglycoside modifying enzymes. Drug Resist Updat 13(6):151–171. https://doi.org/10.1016/j.drup.2010.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mingorance J, Rivas G, Velez M, Gomez-Puertas P, Vicente M (2010) Strong FtsZ is with the force: mechanisms to constrict bacteria. Trends Microbiol 18(8):348–356. https://doi.org/10.1016/j.tim.2010.06.001

    Article  CAS  PubMed  Google Scholar 

  37. Ukkonen K, Vasala A, Ojamo H, Neubauer P (2011) High-yield production of biologically active recombinant protein in shake flask culture by combination of enzyme-based glucose delivery and increased oxygen transfer. Microb Cell Fact 10:107. https://doi.org/10.1186/1475-2859-10-107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Barry AL, Reller LB, Miller GH, Washington JA, Schoenknect FD, Peterson LR, Hare RS, Knapp C (1992) Revision of standards for adjusting the cation content of Mueller-Hinton broth for testing susceptibility of Pseudomonas aeruginosa to aminoglycosides. J Clin Microbiol 30(3):585–589

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Abramoff M, Magelhaes P, Ram S (2004) Image processing with Image J. J Biophotonics 11:36–42

    Google Scholar 

  40. Copolovici DM, Langel K, Eriste E, Langel U (2014) Cell-penetrating peptides: design, synthesis, and applications. ACS Nano 8(3):1972–1994. https://doi.org/10.1021/nn4057269

    Article  CAS  PubMed  Google Scholar 

  41. Lehto T, Ezzat K, Wood MJ, El Andaloussi S (2016) Peptides for nucleic acid delivery. Adv Drug Del Rev 106(Pt A):172–182. https://doi.org/10.1016/j.addr.2016.06.008

    Article  CAS  Google Scholar 

  42. Reissmann S (2014) Cell penetration: scope and limitations by the application of cell-penetrating peptides. J Pept Sci 20(10):760–784. https://doi.org/10.1002/psc.2672

    Article  CAS  PubMed  Google Scholar 

  43. Lopez C, Arivett BA, Actis LA, Tolmasky ME (2015) Inhibition of AAC(6′)-Ib-mediated resistance to amikacin in Acinetobacter baumannii by an antisense peptide-conjugated 2′,4′-bridged nucleic acid-NC-DNA hybrid oligomer. Antimicrob Agents Chemother 59(9):5798–5803. https://doi.org/10.1128/AAC.01304-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Arivett BA, Fiester SE, Ream DC, Centron D, Ramirez MS, Tolmasky ME, Actis LA (2015) Draft genome of the multidrug-resistant Acinetobacter baumannii strain A155 clinical isolate. Genome Announc 3(2):e00212–e00215. https://doi.org/10.1128/genomeA.00212-15

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Public Health Service grant 2R15AI047115-04 from the National Institute of Allergy and Infectious Diseases, National Institutes of Health. A.J. was funded in part by LA Basin Minority Health and Health Disparities International Research Training Program (MHIRT) 5T37MD001368.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo E. Tolmasky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jani, S. et al. (2018). Assessment of External Guide Sequences’ (EGS) Efficiency as Inducers of RNase P-Mediated Cleavage of mRNA Target Molecules. In: Arluison, V., Valverde, C. (eds) Bacterial Regulatory RNA. Methods in Molecular Biology, vol 1737. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7634-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7634-8_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7633-1

  • Online ISBN: 978-1-4939-7634-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics