Sequence-Specific Affinity Chromatography of Bacterial Small Regulatory RNA-Binding Proteins from Bacterial Cells

  • Jonathan Gans
  • Jonathan Osborne
  • Juliet Cheng
  • Louise Djapgne
  • Amanda G. Oglesby-SherrouseEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1737)


Bacterial small RNA molecules (sRNAs) are increasingly recognized as central regulators of bacterial stress responses and pathogenesis. In many cases, RNA-binding proteins are critical for the stability and function of sRNAs. Previous studies have adopted strategies to genetically tag an sRNA of interest, allowing isolation of RNA–protein complexes from cells. Here we present a sequence-specific affinity purification protocol that requires no prior genetic manipulation of bacterial cells, allowing isolation of RNA-binding proteins bound to native RNA molecules.


Bacterial small RNAs Hfq RNA-binding proteins Affinity chromatography In vivo crosslinking Western blot 



This work was supported by NIH grant AI123320 and funding from the University of Maryland School of Pharmacy (to A.G.O.-S.).


  1. 1.
    Panja S, Schu DJ, Woodson SA (2013) Conserved arginines on the rim of Hfq catalyze base pair formation and exchange. Nucleic Acids Res 41:7536–7546CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Panja S, Santiago-Frangos A, Schu DJ, Gottesman S, Woodson SA (2015) Acidic residues in the Hfq chaperone increase the selectivity of sRNA binding and annealing. J Mol Biol 427:3491–3500CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dimastrogiovanni D, Frohlich KS, Bandyra KJ, Bruce HA, Hohensee S, Vogel J, Luisi BF (2014) Recognition of the small regulatory RNA RydC by the bacterial Hfq protein. elife 3.
  4. 4.
    Afonyushkin T, Vecerek B, Moll I, Blasi U, Kaberdin VR (2005) Both RNase E and RNase III control the stability of sodB mRNA upon translational inhibition by the small regulatory RNA RyhB. Nucleic Acids Res 33:1678–1689CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    De Lay N, Gottesman S (2011) Role of polynucleotide phosphorylase in sRNA function in Escherichia coli. RNA 17:1172–1189CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zhang A, Wassarman KM, Ortega J, Steven AC, Storz G (2002) The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol Cell 9:11–22CrossRefPubMedGoogle Scholar
  7. 7.
    Schu DJ, Zhang A, Gottesman S, Storz G (2015) Alternative Hfq-sRNA interaction modes dictate alternative mRNA recognition. EMBO J 34:2557–2573CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Soper TJ, Doxzen K, Woodson SA (2011) Major role for mRNA binding and restructuring in sRNA recruitment by Hfq. RNA 17:1544–1550CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zhang A, Wassarman KM, Rosenow C, Tjaden BC, Storz G, Gottesman S (2003) Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol 50:1111–1124CrossRefPubMedGoogle Scholar
  10. 10.
    Masse E, Escorcia FE, Gottesman S (2003) Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev 17:2374–2383CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mikulecky PJ, Kaw MK, Brescia CC, Takach JC, Sledjeski DD, Feig AL (2004) Escherichia coli Hfq has distinct interaction surfaces for DsrA, rpoS and poly(A) RNAs. Nat Struct Mol Biol 11:1206–1214CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lease RA, Woodson SA (2004) Cycling of the Sm-like protein Hfq on the DsrA small regulatory RNA. J Mol Biol 344:1211–1223CrossRefPubMedGoogle Scholar
  13. 13.
    Sorger-Domenigg T, Sonnleitner E, Kaberdin VR, Blasi U (2007) Distinct and overlapping binding sites of Pseudomonas aeruginosa Hfq and RsmA proteins on the non-coding RNA RsmY. Biochem Biophys Res Commun 352:769–773CrossRefPubMedGoogle Scholar
  14. 14.
    Hunter GA, Keener JP (2014) Mechanisms underlying the additive and redundant Qrr phenotypes in Vibrio harveyi and Vibrio cholerae. J Theor Biol 340:38–49CrossRefPubMedGoogle Scholar
  15. 15.
    Deng Z, Meng X, Su S, Liu Z, Ji X, Zhang Y, Zhao X, Wang X, Yang R, Han Y (2012) Two sRNA RyhB homologs from Yersinia pestis biovar microtus expressed in vivo have differential Hfq-dependent stability. Res Microbiol 163:413–418CrossRefPubMedGoogle Scholar
  16. 16.
    Nielsen JS, Lei LK, Ebersbach T, Olsen AS, Klitgaard JK, Valentin-Hansen P, Kallipolitis BH (2010) Defining a role for Hfq in Gram-positive bacteria: evidence for Hfq-dependent antisense regulation in Listeria monocytogenes. Nucleic Acids Res 38:907–919CrossRefPubMedGoogle Scholar
  17. 17.
    Troxell B, Fink RC, Porwollik S, McClelland M, Hassan HM (2011) The Fur regulon in anaerobically grown Salmonella enterica sv. Typhimurium: identification of new Fur targets. BMC Microbiol 11:236CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Metruccio MM, Fantappie L, Serruto D, Muzzi A, Roncarati D, Donati C, Scarlato V, Delany I (2009) The Hfq-dependent small noncoding RNA NrrF directly mediates Fur-dependent positive regulation of succinate dehydrogenase in Neisseria meningitidis. J Bacteriol 191:1330–1342CrossRefPubMedGoogle Scholar
  19. 19.
    Davis BM, Quinones M, Pratt J, Ding Y, Waldor MK (2005) Characterization of the small untranslated RNA RyhB and its regulon in Vibrio cholerae. J Bacteriol 187:4005–4014CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gaballa A, Antelmann H, Aguilar C, Khakh SK, Song KB, Smaldone GT, Helmann JD (2008) The Bacillus subtilis iron-sparing response is mediated by a Fur-regulated small RNA and three small, basic proteins. Proc Natl Acad Sci U S A 105:11927–11932CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zheng A, Panja S, Woodson SA (2016) Arginine patch predicts the RNA annealing activity of Hfq from gram-negative and gram-positive bacteria. J Mol Biol 428:2259–2264CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Silvaggi JM, Perkins JB, Losick R (2005) Small untranslated RNA antitoxin in Bacillus subtilis. J Bacteriol 187:6641–6650CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Boisset S, Geissmann T, Huntzinger E, Fechter P, Bendridi N, Possedko M, Chevalier C, Helfer AC, Benito Y, Jacquier A et al (2007) Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes Dev 21:1353–1366CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Said N, Rieder R, Hurwitz R, Deckert J, Urlaub H, Vogel J (2009) In vivo expression and purification of aptamer-tagged small RNA regulators. Nucleic Acids Res 37:e133CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Osborne J, Djapgne L, Tran BQ, Goo YA, Oglesby-Sherrouse AG (2014) A method for in vivo identification of bacterial small RNA-binding proteins. Microbiology 3:950–960Google Scholar
  26. 26.
    Blencowe BJ, Sproat BS, Ryder U, Barabino S, Lamond AI (1989) Antisense probing of the human U4/U6 snRNP with biotinylated 2′-OMe RNA oligonucleotides. Cell 59:531–539CrossRefPubMedGoogle Scholar
  27. 27.
    Lingner J, Cech TR (1996) Purification of telomerase from Euplotes aediculatus: requirement of a primer 3′ overhang. Proc Natl Acad Sci U S A 93:10712–10717CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Oglesby-Sherrouse AG, Vasil ML (2010) Characterization of a heme-regulated non-coding RNA encoded by the prrF locus of Pseudomonas aeruginosa. PLoS One 5:e9930CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Jonathan Gans
    • 1
  • Jonathan Osborne
    • 1
  • Juliet Cheng
    • 1
  • Louise Djapgne
    • 1
  • Amanda G. Oglesby-Sherrouse
    • 1
    Email author
  1. 1.Department of Pharmaceutical SciencesUniversity of Maryland, School of PharmacyBaltimoreUSA

Personalised recommendations