Skip to main content

Point-of-Care Testing and Personalized Medicine for Metabolic Disorders

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1735))

Abstract

This chapter describes innovations in biomarker testing that can facilitate earlier and better treatment of patients who suffer from metabolic disorders. The use of new microfluidic devices along with miniaturized biosensors and transducers enables analysis of a single drop of a blood within the time frame of a typical visit to a doctor’s office. Steps are underway so that these approaches will incorporate both biochemical and clinical data, resulting in unique bioprofiles for each patient. This will allow earlier, personalized, and more effective therapeutic options. In addition, smartphone apps for self-monitoring will be used increasingly for the best possible patient outcomes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. http://www.who.int/nmh/publications/ncd_report_chapter1.pdf

  2. http://www.who.int/mediacentre/factsheets/fs317/en/

  3. http://www.who.int/mediacentre/factsheets/fs311/en/

  4. http://www.mckinsey.com/industries/healthcare-systems-and-services/our-insights/how-the-world-could-better-fight-obesity

  5. http://apps.who.int/iris/bitstream/10665/204871/1/9789241565257_eng.pdf

  6. http://www3.weforum.org/docs/WEF_Harvard_HE_GlobalEconomicBurdenNonCommunicableDiseases_2011.pdf

  7. Piot P, Caldwell A, Lamptey P, Nyrirenda M, Mehra S, Cahill K et al (2016) Addressing the growing burden of non-communicable disease by leveraging lessons from infectious disease management. J Glob Health 6:010304. https://doi.org/10.7189/jogh.06.010304

    Article  PubMed  PubMed Central  Google Scholar 

  8. Carolan-Olah M, Duarte-Gardea M, Lechuga J (2015) A critical review: early life nutrition and prenatal programming for adult disease. J Clin Nurs 24:3716–3729

    Article  PubMed  Google Scholar 

  9. Lopes GA, Ribeiro VL, Barbisan LF, Marchesan Rodrigues MA (2016) Fetal developmental programing: insights from human studies and experimental models. J Matern Fetal Neonatal Med 23:1–7

    Google Scholar 

  10. Lee HS (2015) Impact of maternal diet on the epigenome during in utero life and the developmental programming of diseases in childhood and adulthood. Forum Nutr 7:9492–9507

    CAS  Google Scholar 

  11. Tarry-Adkins JL, Ozanne SE (2016) Nutrition in early life and age-associated diseases. Ageing Res Rev pii:S1568–1637(16)30179–9. https://doi.org/10.1016/j.arr.2016.08.003

    Google Scholar 

  12. Dixon JB (2009) Obesity and diabetes: the impact of bariatric surgery on type-2 diabetes. World J Surg 33:2014–2021

    Article  PubMed  Google Scholar 

  13. Khavandi K, Brownrigg J, Hankir M, Sood H, Younis N, Worth J (2014) Interrupting the natural history of diabetes mellitus: lifestyle, pharmacological and surgical strategies targeting disease progression. Curr Vasc Pharmacol 12:155–167

    Article  CAS  PubMed  Google Scholar 

  14. Allison BJ, Kaandorp JJ, Kane AD, Camm EJ, Lusby C, Cross CM et al (2016) Divergence of mechanistic pathways mediating cardiovascular aging and developmental programming of cardiovascular disease. FASEB J 30:1968–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Camm EJ, Martin-Gronert MS, Wright NL, Hansell JA, Ozanne SE, Giussani DA (2011) Prenatal hypoxia independent of undernutrition promotes molecular markers of insulin resistance in adult offspring. FASEB J 25:420–427

    Article  CAS  PubMed  Google Scholar 

  16. Martínez JA, Cordero P, Campión J, Milagro FI (2012) Interplay of early-life nutritional programming on obesity, inflammation and epigenetic outcomes. Proc Nutr Soc 71:276–283

    Article  PubMed  Google Scholar 

  17. Ortiz-Espejo M, Pérez-Navero JL, Olza J, Muñoz-Villanueva MC, Aguilera CM, Gil-Campos M (2013) Changes in plasma adipokines in prepubertal children with a history of extrauterine growth restriction. Nutrition 29:1321–1325

    Article  CAS  PubMed  Google Scholar 

  18. Tan HC, Roberts J, Catov J, Krishnamurthy R, Shypailo R, Bacha F (2015) Mother’s pre-pregnancy BMI is an important determinant of adverse cardiometabolic risk in childhood. Pediatr Diabetes 16:419–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dutton GR, Lewis CE (2015) The look AHEAD trial: implications for lifestyle intervention in type 2 diabetes mellitus. Prog Cardiovasc Dis 58:69–75

    Article  PubMed  PubMed Central  Google Scholar 

  20. Paquot N (2015) From evidence-based medicine to personalized medicine: the example of type 2 diabetes. Rev Med Liege 70:299–305. [Article in French]

    CAS  PubMed  Google Scholar 

  21. Jones PJ (2015) Inter-individual variability in response to plant sterol and stanol consumption. J AOAC Int 98:724–728

    Article  CAS  PubMed  Google Scholar 

  22. Tudos AJ, Besselink GJ, Schasfoort RB (2001) Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab Chip 1:83–95

    Article  CAS  PubMed  Google Scholar 

  23. Schumacher S, Nestler J, Otto T, Wegener M, Ehrentreich-Förster E, Michel D et al (2012) Highly-integrated lab-on-chip system for point-of-care multiparameter analysis. Lab Chip 12:464–473

    Article  CAS  PubMed  Google Scholar 

  24. Schumacher S, Ludecke C, Ehrentreich-Förster E, Bier FF (2013) Platform technologies for molecular diagnostics near the patient's bedside. Adv Biochem Eng Biotechnol 133:75–87

    CAS  PubMed  Google Scholar 

  25. Peter H, Wienke J, Bier FF (2017) Lab-on-a-chip multiplex assays. Methods Mol Biol 1546:283–294

    Article  CAS  PubMed  Google Scholar 

  26. Guest FL, Guest PC, Martins-de-Souza D (2016) The emergence of point-of-care blood-based biomarker testing for psychiatric disorders: enabling personalized medicine. Biomark Med 10:431–443

    Article  CAS  PubMed  Google Scholar 

  27. Chan CP, Sum KW, Cheung KY, Glatz JF, Sanderson JE, Hempel A et al (2003) Development of a quantitative lateral-flow assay for rapid detection of fatty acid-binding protein. J Immunol Methods 279:91–100

    Article  CAS  PubMed  Google Scholar 

  28. Celenza A, Skinner K (2011) Comparison of emergency department point-of-care international normalised ratio (INR) testing with laboratory-based testing. Emerg Med J 28:136–140

    Article  PubMed  Google Scholar 

  29. van den Besselaar AM, Péquériaux NC, Ebben M, van der Feest J, de Jong K, Ganzeboom MB et al (2012) Point-of-care monitoring of vitamin K-antagonists: validation of CoaguChek XS test strips with international standard thromboplastin. J Clin Pathol 65:1031–1035

    Article  PubMed  Google Scholar 

  30. Vegt J (2017) Development of a user-friendly app for assisting anticoagulation treatment. Methods Mol Biol 1546:303–308

    Article  CAS  PubMed  Google Scholar 

  31. Burgess-Cassler A, Barriga Angulo G, Wade SE, Castillo Torres P, Schramm W (1996) A field test for the detection of antibodies to human immunodeficiency virus types 1 and 2 in serum or plasma. Clin Diagn Lab Immunol 3:480–482

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Jelinek T, Grobusch MP, Schwenke S, Steidl S, von Sonnenburg F, Nothdurft HD et al (1999) Sensitivity and specificity of dipstick tests for rapid diagnosis of malaria in nonimmune travelers. J Clin Microbiol 37:721–723

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee JH, Seo HS, Kwon JH, Kim HT, Kwon KC, Sim SJ et al (2015) Multiplex diagnosis of viral infectious diseases (AIDS, hepatitis C, and hepatitis A) based on point of care lateral flow assay using engineered proteinticles. Biosens Bioelectron 69:213–225

    Article  CAS  PubMed  Google Scholar 

  34. Wallace JA, Blum K (1982) An evaluation of the TRI Dipstick test for the detection of drugs of abuse in urine. Subst Alcohol Actions Misuse 3:129–132

    CAS  PubMed  Google Scholar 

  35. Gnoth C, Johnson S (2014) Strips of hope: accuracy of home pregnancy tests and new developments. Geburtshilfe Frauenheilkd 74:661–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Johnson S, Cushion M, Bond S, Godbert S, Pike J (2015) Comparison of analytical sensitivity and women's interpretation of home pregnancy tests. Clin Chem Lab Med 53:391–402

    CAS  PubMed  Google Scholar 

  37. Hendey GW, Schwab T, Soliz T (1997) Urine ketone dip test as a screen for ketonemia in diabetic ketoacidosis and ketosis in the emergency department. Ann Emerg Med 29:735–738

    Article  CAS  PubMed  Google Scholar 

  38. Lee WC, Smith E, Chubb B, Wolden ML (2014) Frequency of blood glucose testing among insulin-treated diabetes mellitus patients in the United Kingdom. J Med Econ 17:167–175

    Article  PubMed  Google Scholar 

  39. http://www.cobas.com/home/product/urinalysis-testing/combur-test-strip.html

  40. Schwarz E (2017) Identification and clinical translation of biomarker signatures: statistical considerations. Methods Mol Biol 1546:103–114

    Article  CAS  PubMed  Google Scholar 

  41. Chen J, Schwarz E (2017) Opportunities and challenges of multiplex assays: a machine learning perspective. Methods Mol Biol 1546:115–122

    Article  CAS  PubMed  Google Scholar 

  42. Liu MY, Xydakis AM, Hoogeveen RC, Jones PH, Smith EO, Nelson KW et al (2005) Multiplexed analysis of biomarkers related to obesity and the metabolic syndrome in human plasma, using the Luminex-100 system. Clin Chem 51:1102–1109

    Article  CAS  PubMed  Google Scholar 

  43. Purohit S, Sharma A, She JX (2015) Luminex and other multiplex high throughput technologies for the identification of, and host response to, environmental triggers of type 1 diabetes. Biomed Res Int 2015:326918. https://doi.org/10.1155/2015/326918

    Article  PubMed  PubMed Central  Google Scholar 

  44. Op De Beéck K, Vermeersch P, Verschueren P, Westhovens R, Mariën G, Blockmans D et al (2012) Antinuclear antibody detection by automated multiplex immunoassay in untreated patients at the time of diagnosis. Autoimmun Rev 12:137–143

    Article  Google Scholar 

  45. Nolen BM, Lokshin AE (2013) Biomarker testing for ovarian cancer: clinical utility of multiplex assays. Mol Diagn Ther 17:139–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kang JH, Vanderstichele H, Trojanowski JQ, Shaw LM (2012) Simultaneous analysis of cerebrospinal fluid biomarkers using microsphere-based xMAP multiplex technology for early detection of Alzheimer’s disease. Methods 56:484–934

    Article  CAS  PubMed  Google Scholar 

  47. Schaffer C, Sarad N, DeCrumpe A, Goswami D, Herrmann S, Morales J et al (2015) Biomarkers in the diagnosis and prognosis of Alzheimer’s disease. J Lab Autom 20:589–600

    Article  CAS  PubMed  Google Scholar 

  48. Lue LF, Schmitz CT, Snyder NL, Chen K, Walker DG, Davis KJ et al (2016) Converging mediators from immune and trophic pathways to identify Parkinson disease dementia. Neurol Neuroimmunol Neuroinflamm 3:e193. https://doi.org/10.1212/NXI.0000000000000193

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schwarz E, Guest PC, Rahmoune H, Harris LW, Wang L, Leweke FM et al (2012) Identification of a biological signature for schizophrenia in serum. Mol Psychiatry 17:494–502

    Article  CAS  PubMed  Google Scholar 

  50. Papakostas GI, Shelton RC, Kinrys G, Henry ME, Bakow BR, Lipkin SH et al (2013) Assessment of a multi-assay, serum-based biological diagnostic test for major depressive disorder: a pilot and replication study. Mol Psychiatry 18:332–333

    Article  CAS  PubMed  Google Scholar 

  51. Perkins DO, Jeffries CD, Addington J, Bearden CE, Cadenhead KS, Cannon TD et al (2014) Towards a psychosis risk blood diagnostic for persons experiencing high-risk symptoms: preliminary results from the NAPLS project. Schizophr Bull 41:419–428

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chan MK, Krebs MO, Cox D, Guest PC, Yolken RH, Rahmoune H et al (2015) Development of a blood-based molecular biomarker test for identification of schizophrenia before disease onset. Transl Psychiatry 5:e601. https://doi.org/10.1038/tp.2015.91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stelzhammer V, Haenisch F, Chan MK, Cooper JD, Steiner J, Steeb H et al (2014) Proteomic changes in serum of first onset, antidepressant drug-naïve major depression patients. Int J Neuropsychopharmacol 17(10):1599–1608

    Article  CAS  PubMed  Google Scholar 

  54. Leary PE, Dobson GS, Reffner JA (2016) Development and applications of portable gas chromatography-mass spectrometry for emergency responders, the military, and law-enforcement organizations. Appl Spectrosc 70:888–896

    Article  CAS  PubMed  Google Scholar 

  55. Schott M, Wehrenfennig C, Gasch T, Düring RA, Vilcinskas A (2013) A portable gas chromatograph with simultaneous detection by mass spectrometry and electroantennography for the highly sensitive in situ measurement of volatiles. Anal Bioanal Chem 405:7457–7467

    Article  CAS  PubMed  Google Scholar 

  56. Rollman CM, Moini M (2016) Ultrafast capillary electrophoresis/mass spectrometry of controlled substances with optical isomer separation in about a minute. Rapid Commun Mass Spectrom 30:2070–2076

    Article  CAS  PubMed  Google Scholar 

  57. Devereaux ZJ, Reynolds CA, Foley CD, Fischer JL, DeLeeuw JL, Wager-Miller J et al (2016) Matrix-assisted ionization (MAI) on a portable mass spectrometer: analysis directly from biological and synthetic materials. Anal Chem 88(22):10831–10836

    Article  CAS  PubMed  Google Scholar 

  58. Pawell RS, Inglis DW, Barber TJ, Taylor RA (2013) Manufacturing and wetting low-cost microfluidic cell separation devices. Biomicrofluidics 7:056501. https://doi.org/10.1063/1.4821315

    Article  PubMed Central  Google Scholar 

  59. Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR et al (2006) Microfluidic diagnostic technologies for global public health. Nature 442:412–418

    Article  CAS  PubMed  Google Scholar 

  60. Ermantraut E, Bickel R, Schulz T, Ullrich T Tuchscheerer J (2011) Device and method for the detection of particles. USPTO Patent US8040494. Clondiag GmbH

    Google Scholar 

  61. Shafiee H, Kanakasabapathy MK, Juillard F, Keser M, Sadasivam M, Yuksekkaya M (2015) Printed flexible plastic microchip for viral load measurement through quantitative detection of viruses in plasma and saliva. Sci Rep 5:9919. https://doi.org/10.1038/srep09919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim JH, Yeo WH, Shu Z, Soelberg SD, Inoue S, Kalyanasundaram D (2012) Immunosensor towards low-cost, rapid diagnosis of tuberculosis. Lab Chip 12:1437–1440

    Article  CAS  PubMed  Google Scholar 

  63. Gao R, Cheng Z, deMello AJ, Choo J (2016) Wash-free magnetic immunoassay of the PSA cancer marker using SERS and droplet microfluidics. Lab Chip 16:1022–1029

    Article  CAS  PubMed  Google Scholar 

  64. Parra-Cabrera C, Samitier J, Homs-Corbera A (2016) Multiple biomarkers biosensor with just-in-time functionalization: application to prostate cancer detection. Biosens Bioelectron 77:1192–1200

    Article  CAS  PubMed  Google Scholar 

  65. Guest PC (2017) Multiplex biomarker approaches to enable point-of-care testing and personalized medicine. Methods Mol Biol 1546:311–315

    Article  CAS  PubMed  Google Scholar 

  66. www.statistica.com/statistics/274774/forecast-of-mobile-phone-users-worldwide/

  67. www.worldometers.info/world-population/

  68. Klasnja P, Pratt W (2012) Healthcare in the pocket: mapping the space of mobile-phone health interventions. J Biomed Inform 45:184–198

    Article  PubMed  Google Scholar 

  69. Ventola CL (2014) Mobile devices and apps for health care professionals: uses and benefits. P T 39:356–364

    PubMed  PubMed Central  Google Scholar 

  70. Krishna S, Boren SA, Balas EA (2009) Healthcare via cell phones: a systematic review. Telemed J E Health 15:231–240

    Article  PubMed  Google Scholar 

  71. Liao SC, Peng J, Mauk MG, Awasthi S, Song J, Friedman H (2016) Smart cup: a minimally-instrumented, smartphone-based point-of-care molecular diagnostic device. Sens Actuators B Chem 229:232–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yeo SJ, Choi K, Cuc BT, Hong NN, Bao DT, Ngoc NM et al (2016) Smartphone-based fluorescent diagnostic system for highly pathogenic H5N1 viruses. Theranostics 6:231–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Guo T, Patnaik R, Kuhlmann K, Rai AJ, Sia SK (2015) Smartphone dongle for simultaneous measurement of hemoglobin concentration and detection of HIV antibodies. Lab Chip 15:3514–3520

    Article  CAS  PubMed  Google Scholar 

  74. Barbosa AI, Gehlot P, Sidapra K, Edwards AD, Reis NM (2015) Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device. Biosens Bioelectron 70:5–14

    Article  CAS  PubMed  Google Scholar 

  75. Barton S, Swanton C (2011) Recent developments in treatment stratification for metastatic breast cancer. Drugs 71:2099–2113

    Article  CAS  PubMed  Google Scholar 

  76. Kanda M, Kodera Y (2015) Recent advances in the molecular diagnostics of gastric cancer. World J Gastroenterol 21:9838–9852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sternberg IA, Vela I, Scardino PT (2016) Molecular profiles of prostate cancer: to treat or not to treat. Annu Rev Med 67:119–135

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul C. Guest .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Guest, F.L., Guest, P.C. (2018). Point-of-Care Testing and Personalized Medicine for Metabolic Disorders. In: Guest, P. (eds) Investigations of Early Nutrition Effects on Long-Term Health. Methods in Molecular Biology, vol 1735. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7614-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7614-0_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7613-3

  • Online ISBN: 978-1-4939-7614-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics