Skip to main content

Hormonal Smartphone Diagnostics

Part of the Methods in Molecular Biology book series (MIMB,volume 1735)

Abstract

Mobile point-of-care diagnostics are paramount for the provision of healthcare. Hormonal diagnostics are powerful tools to monitor timely changes in human physiology. Hormone concentrations in serum directly correlate with urine excretions with minor time delays. Therefore, rapid tests for hormones in urine have been widely used for decades as means of early diagnostics, particularly in lateral flow immunoassay formats. However, the challenge of reading and interpreting these binary tests remains. Here we present a method for utilizing mobile technologies to quantitatively read and interpret hormonal test strips. The method demonstrates the detection of a urinary by-product of progesterone, pregnanediol glucuronide (PdG), and its relation to ovulation and the fertility cycle.

Key words

  • Smartphone
  • Diagnostics
  • Mobile
  • Medical
  • Application
  • Quantitative assays
  • Hormones
  • Progesterone
  • PdG
  • Ovulation

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Nussey SS, Whitehead SA (2001) Endocrinology: an integrated approach, 1st edn. CRC Press, Boca Raton, FL. (14 May 2001). ISBN-10: 1859962521

    CrossRef  Google Scholar 

  2. Allen AM, McRae-Clark AL, Carlson S, Saladin ME, Gray KM, Wetherington CL et al (2016) Determining menstrual phase in human biobehavioral research: a review with recommendations. Exp Clin Psychopharmacol 24:1–11

    CrossRef  PubMed  PubMed Central  Google Scholar 

  3. Balasch J (2003) Sex steroids and bone: current perspectives. Hum Reprod Update 9:207–222

    CrossRef  CAS  PubMed  Google Scholar 

  4. Seifert-Klauss V (2012) Progesteron und Knochen. Gynäkologische Endokrinologie 10(1):37–44

    CrossRef  CAS  Google Scholar 

  5. Seifert-Klauss V, Schmidmayr M, Hobmaier E, Wimmer T (2012) Progesterone and bone: a closer link than previously realized. Climacteric 15(Suppl 1):26–31

    CrossRef  CAS  PubMed  Google Scholar 

  6. Seifert-Klauss V, Prior JC (2010) Progesterone and bone: actions promoting bone health in women. J Osteoporos 2010:845180. https://doi.org/10.4061/2010/845180

    CrossRef  PubMed  PubMed Central  Google Scholar 

  7. Sathish V, Martin YN, Prakash YS (2015) Sex steroid signaling: implications for lung diseases. Pharmacol Ther 150:94–108

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gonzalez-Arenas A, Agramonte-Hevia J (2012) Sex steroid hormone effects in normal and pathologic conditions in lung physiology. Mini Rev Med Chem 12:1055–1062

    CrossRef  CAS  PubMed  Google Scholar 

  9. Cabrera-Munoz E, Hernandez-Hernandez OT, Camacho-Arroyo I (2012) Role of estradiol and progesterone in HIV susceptibility and disease progression. Mini Rev Med Chem 12:1049–1054

    CrossRef  CAS  PubMed  Google Scholar 

  10. Schumacher M, Mattern C, Ghoumari A, Oudinet JP, Liere P, Labombarda F et al (2014) Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol 113:6–39

    CrossRef  CAS  PubMed  Google Scholar 

  11. Baulieu E, Schumacher M (2000) Progesterone as a neuroactive neurosteroid, with special reference to the effect of progesterone on myelination. Steroids 65:605–612

    CrossRef  CAS  PubMed  Google Scholar 

  12. Wagner CK (2006) The many faces of progesterone: a role in adult and developing male brain. Front Neuroendocrinol 27:340–359

    CrossRef  CAS  PubMed  Google Scholar 

  13. Brinton RD, Thompson RF, Foy MR, Baudry M, Wang J, Finch CE et al (2008) Progesterone receptors: form and function in brain. Front Neuroendocrinol 29:313–339

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  14. Filicori M (2015) Clinical roles and applications of progesterone in reproductive medicine: an overview. Acta Obstet Gynecol Scand 94(Suppl 161):3–7

    CrossRef  CAS  PubMed  Google Scholar 

  15. Blackwell LF, Brown JB, Cooke D (1998) Definition of the potentially fertile period from urinary steroid excretion rates. Part II. A threshold value for pregnanediol glucuronide as a marker for the end of the potentially fertile period in the human menstrual cycle. Steroids 63:5–13

    CrossRef  CAS  PubMed  Google Scholar 

  16. Mesen TB, Young SL (2015) Progesterone and the luteal phase a requisite to reproduction. Obstet Gynecol Clin North Am 42:135–151

    CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Christensen A, Bentley GE, Cabrera R, Ortega HH, Perfito N, Wu TJ et al (2012) Hormonal regulation of female reproduction. Horm Metab Res 44:587–591

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  18. Macias H, Hinck L (2012) Mammary gland development. Wiley Interdiscip Rev Dev Biol 1:533–557

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  19. Williams NI, Reed JL, Leidy HJ, Legro RS, De Souza MJ (2010) Estrogen and progesterone exposure is reduced in response to energy deficiency in women aged 25-40 years. Hum Reprod 25:2328–2339

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maggio L, Rouse DJ (2014) Progesterone. Clin Obstet Gynecol 57:547–556

    CrossRef  PubMed  Google Scholar 

  21. Stanczyk FZ, Gentzschein E, Ary BA, Kojima T, Ziogas A, Lobo RA (1997) Urinary progesterone and pregnanediol. Use for monitoring progesterone treatment. J Reprod Med 42:216–222

    CAS  PubMed  Google Scholar 

  22. Collins WP (1991) The evolution of reference methods to monitor ovulation. Am J Obstet Gynecol 165:1994–1996

    CrossRef  CAS  PubMed  Google Scholar 

  23. Brown JB (2011) Types of ovarian activity in women and their significance: the continuum (a reinterpretation of early findings). Hum Reprod Update 17(2):141–158

    CrossRef  CAS  PubMed  Google Scholar 

  24. Cekan SZ, Beksac MS, Wang E, Shi S, Masironi B, Landgren BM et al (1986) The prediction and/or detection of ovulation by means of urinary steroid assays. Contraception 33:327–345

    CrossRef  CAS  PubMed  Google Scholar 

  25. Roos J, Johnson S, Weddell S, Godehardt E, Schiffner J, Freundl G et al (2015) Monitoring the menstrual cycle: comparison of urinary and serum reproductive hormones referenced to true ovulation. Eur J Contracept Reprod Health Care 20:438–450

    CrossRef  PubMed  Google Scholar 

  26. Branch CM, Collins PO, Collins WP (1982) Ovulation prediction: changes in the concentrations of urinary estrone-3-glucuronide, estradiol-17 beta-glucuronide and estriol-16 alpha-glucuronide during conceptional cycles. J Steroid Biochem 16:345–347

    CrossRef  CAS  PubMed  Google Scholar 

  27. Blackwell LF, Vigil P, Alliende ME, Brown S, Festin M, Cooke DG (2016) Monitoring of ovarian activity by measurement of urinary excretion rates using the ovarian monitor, part IV: the relationship of the pregnanediol glucuronide threshold to basal body temperature and cervical mucus as markers for the beginning of the post-ovulatory infertile period. Hum Reprod 31:445–453

    PubMed  Google Scholar 

  28. Johnson S, Weddell S, Godbert S, Freundl G, Roos J, Gnoth C (2015) Development of the first urinary reproductive hormone ranges referenced to independently determined ovulation day. Clin Chem Lab Med 53:1099–1108

    CAS  PubMed  Google Scholar 

  29. O'Connor KA, Ferrell R, Brindle E, Trumble B, Shofer J, Holman DJ et al (2009) Progesterone and ovulation across stages of the transition to menopause. Menopause 16:1178–1187

    CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Blackwell LF, Vigil P, Cooke DG, d'Arcangues C, Brown JB (2013) Monitoring of ovarian activity by daily measurement of urinary excretion rates of oestrone glucuronide and pregnanediol glucuronide using the ovarian monitor, part III: variability of normal menstrual cycle profiles. Hum Reprod 28:3306–3315

    CrossRef  CAS  PubMed  Google Scholar 

  31. Ecochard R, Leiva R, Bouchard T, Boehringer H, Direito A, Mariani A et al (2013) Use of urinary pregnanediol 3-glucuronide to confirm ovulation. Steroids 78:1035–1040

    CrossRef  CAS  PubMed  Google Scholar 

  32. Blackwell LF, Vigil P, Gross B, d'Arcangues C, Cooke DG, Brown JB (2012) Monitoring of ovarian activity by measurement of urinary excretion rates of estrone glucuronide and pregnanediol glucuronide using the ovarian monitor, part II: reliability of home testing. Hum Reprod 27:550–557

    CrossRef  CAS  PubMed  Google Scholar 

  33. Blackwell LF, Brown JB, Vigil P, Gross B, Sufi S, d'Arcangues C (2003) Hormonal monitoring of ovarian activity using the ovarian monitor, part I. Validation of home and laboratory results obtained during ovulatory cycles by comparison with radioimmunoassay. Steroids 68:465–476

    CrossRef  CAS  PubMed  Google Scholar 

  34. Bouchard TP, Genuis SJ (2011) Personal fertility monitors for contraception. CMAJ 183:73–76

    CrossRef  PubMed  PubMed Central  Google Scholar 

  35. Yetisen AK, Martinez-Hurtado JL, da Cruz Vasconcellos F, Simsekler MC, Akram MS, Lowe CR (2014) The regulation of mobile medical applications. Lab Chip 14:833–840

    CrossRef  CAS  PubMed  Google Scholar 

  36. Martinez-Hurtado JL, Yetisen AK, Yun SH (2017) Multiplex smartphone diagnostics. Methods Mol Biol 1546:295–302

    CrossRef  CAS  PubMed  Google Scholar 

  37. Yetisen AK, Martinez-Hurtado JL, Garcia-Melendrez A, Vasconcellos FC, Lowe CR (2014) A smartphone algorithm with inter-phone repeatability for the analysis of colorimetric tests. Sensor Actuat B-Chem 196:156–160

    CrossRef  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge MFB Fertility Inc. for providing the PdG lateral flow test strips.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Martinez-Hurtado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Matías-García, P.R., Martinez-Hurtado, J.L., Beckley, A., Schmidmayr, M., Seifert-Klauss, V. (2018). Hormonal Smartphone Diagnostics. In: Guest, P. (eds) Investigations of Early Nutrition Effects on Long-Term Health. Methods in Molecular Biology, vol 1735. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7614-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7614-0_38

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7613-3

  • Online ISBN: 978-1-4939-7614-0

  • eBook Packages: Springer Protocols