Skip to main content

Methods for the Characterization of Plant-Growth Promoting Rhizobacteria

  • Protocol
  • First Online:
Host-Pathogen Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1734))

Abstract

A detailed description of methods most frequently used for the identification and characterization of beneficial microbial strains is presented in this chapter. The methods include microbiological, biochemical, and molecular approaches. Microbiological and biochemical methods comprise a broad range of techniques that are based on the analysis of phosphate solubilization, nitrogenase activity, indole-3-acetic acid production, bacterial motility, presence of catalase and nitrate reductase enzyme, Gram’s staining of the cell wall, siderophore production, and microbial chemotaxis. The molecular methods involve a range of techniques that are based on the extraction and analysis of microbial DNA. The extracted nucleic acid can be specifically amplified using polymerase chain reaction (PCR), and subsequently cloned and sequenced. The sequencing of conserved genes such as internal transcribed spacer (ITS) region or 16S rRNA in a microbial genome is used extensively in resolving taxonomic identity of microbial strains. These methods are highly sensitive and allow for a high degree of specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tikhonovich IA, Provorov NA (2011) Microbiology is the basis of sustainable agriculture: an opinion. Ann Appl Biol 159:155–168

    Article  CAS  Google Scholar 

  2. Bell T, Newman JA, Silverman BW et al (2005) The contribution of species richness and composition to bacterial services. Nature 436:1157–1160

    Article  CAS  PubMed  Google Scholar 

  3. Hol WHG, de Boer W, Termorshuizen AJ et al (2010) Reduction of rare soil microbes modifies plant-herbivore interactions. Ecol Lett 13:292–301

    Article  PubMed  Google Scholar 

  4. Bever JD (2003) Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytol 157:465–473

    Article  Google Scholar 

  5. Reynolds HL, Packer A, Bever JD et al (2003) Grassroots ecology: plant-microbe-soil interactions as drivers of plant community structure and dynamics. Ecology 84:2281–2291

    Article  Google Scholar 

  6. Schmidt V, Jarosch A, Marz P et al (2012) Rapid identification of bacteria in positive blood culture by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Eur J Clin Microbiol Infect Dis 31:311–317

    Article  CAS  PubMed  Google Scholar 

  7. Islam S, Akanda AM, Prova A et al (2015) Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Front Microbiol 6:1360

    PubMed  Google Scholar 

  8. Bellenger JP, Wichard T, Kustka AB et al (2008) Uptake of molybdenum and vanadium by a nitrogen-fixing soil bacterium using siderophores. Nat Geosci 1:243–246

    Article  CAS  Google Scholar 

  9. Braud A, Jézéquel K, Bazot S et al (2009) Enhanced phytoextraction of an agricultural Cr-and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286

    Article  PubMed  Google Scholar 

  10. O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304

    Article  PubMed  Google Scholar 

  11. Zhulin IB, Tretyakova SE, Ignatov VV (1988) Chemotaxis of Azospirillum brasilense towards compounds typical of plant roots exudates. Folia Microbiol 33:277–280

    Article  CAS  Google Scholar 

  12. Yarza P, Yilmaz P, Pruesse E et al (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12:635–645

    Article  CAS  PubMed  Google Scholar 

  13. Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    Article  CAS  PubMed  Google Scholar 

  14. Berrios J, Illanes A, Aroca G (2004) Spectrophotometric method for determining Gibberellic acid in fermentation broths. Biotechnol Lett 26:67–70

    Article  CAS  PubMed  Google Scholar 

  15. Cocking EC (2003) Endophytic colonization of plat roots by nitrogen-fixing bacteria. Plant Soil 252:169–175

    Article  CAS  Google Scholar 

  16. Gøtterup J, Olsen K, Knøchel S et al (2007) Relationship between nitrate/nitrite reductase activities in meat associated staphylococci and nitrosyl myoglobin formation in a cured meat model system. Int J Food Microbiol 120:303–310

    Article  PubMed  Google Scholar 

  17. Hague A, Jones GE (2008) Cell motility assays. Cell Biol Toxicol 24:381

    Article  PubMed  Google Scholar 

  18. O’Toole GA (2011) Microtiter dish biofilm formation assay. J Vis Exp 30:2437

    Google Scholar 

  19. Margie O, Palmer C, Chin-Sang I (2013) C. elegans chemotaxis assay. J Vis Exp 74:e50069

    Google Scholar 

  20. Beveridge TJ (2001) Use of the gram stain in microbiology. Biotech Histochem 76:111–118

    Article  CAS  PubMed  Google Scholar 

  21. Toda T, Hyakumachi M, Suga H et al (1999) Differentiation of Rhizoctonia AG-D isolates from turf grass into subgroups I and II based on rDNA and RAPD analysis. Eur J Plant Pathol 105:835–846

    Article  CAS  Google Scholar 

  22. Hayakawa T, Toda T, Ping Q et al (2006) New subgroup of Rhizoctonia AG-D, AG-DIII, obtained from Japanese zoysia grass exhibiting symptoms of a new disease. Plant Dis 90:1389–1394

    Article  CAS  Google Scholar 

  23. Hossain MM, Sultana F, Miyazawa M et al (2014) Plant growth-promoting fungus Penicillium spp. GP 15-1 enhance growth and confers protection against damping-off and anthracnose in the cucumber. J Oleo Sci 63:391–400

    Article  CAS  PubMed  Google Scholar 

  24. Spiff ED, Odu CT (1973) Acetylene reduction by Beijerinckia under various partial pressures of oxygen and acetylene. J Gen Microbiol 78:207–209

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial assistance from University Grant Commissions through Research Management Committee of Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Motaher Hossain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hossain, M.M., Sultana, F. (2018). Methods for the Characterization of Plant-Growth Promoting Rhizobacteria. In: Medina, C., López-Baena, F. (eds) Host-Pathogen Interactions. Methods in Molecular Biology, vol 1734. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7604-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7604-1_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7603-4

  • Online ISBN: 978-1-4939-7604-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics