Identification and Validation of Potential Differential miRNA Regulation via Alternative Polyadenylation

  • Max Hübner
  • Pedro A. F. Galante
  • Simone Kreth
  • Ludwig Christian Hinske
Part of the Methods in Molecular Biology book series (MIMB, volume 1733)


MiRNAs control gene expression via recognition of specific sequences in the 3′ untranslated region of target genes, leading to mRNA degradation and consequently translational repression. The regulatory impact of miRNAs does not only depend on their expression levels, but also on their targets’ mRNA configuration. Via alternative polyadenylation mRNA isoforms are created that may or may not contain the respective miRNA target sequence, turning the regulatory between these two on or off. In the following article, we describe our protocol on how to combine a bioinformatics evaluation of a potential miRNA–target gene interaction using the public web framework miRIAD with 5′ rapid amplification of cDNA ends (5′-RACE) in order to explore differential gene regulation by miRNAs through alternative polyadenylation.

Key words

Differential miRNA targeting 3′ RACE Alternative polyadenylation Intronic miRNAs Tissue-specific regulation 


  1. 1.
    Schmitt DC, Madeira da Silva L, Zhang W, Liu Z, Arora R, Lim S et al (2015) ErbB2-intronic microRNA-4728: a novel tumor suppressor and antagonist of oncogenic MAPK signaling. Cell Death Dis 6:e1742CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Yan L, Hao H, Elton TS, Liu Z, Ou H (2011) Intronic microRNA suppresses endothelial nitric oxide synthase expression and endothelial cell proliferation via inhibition of STAT3 signaling. Mol Cell Biochem 357:9–19CrossRefPubMedGoogle Scholar
  3. 3.
    Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D, Chamorro-Jorganes A, Ramírez CM et al (2013) A regulatory role for microRNA 33* in controlling lipid metabolism gene expression. Mol Cell Biol 33:2339–2352CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Pang JC-S, Kwok WK, Chen Z, Ng H-K (2009) Oncogenic role of microRNAs in brain tumors. Acta Neuropathol 117:599–611CrossRefPubMedGoogle Scholar
  5. 5.
    Hendrickson DG, Hogan DJ, McCullough HL, Myers JW, Herschlag D, Ferrell JE et al (2009) Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol 7:e1000238CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Brawand D, Soumillon M, Necsulea A, Julien P, Csárdi G, Harrigan P et al (2011) The evolution of gene expression levels in mammalian organs. Nature 478:343–348CrossRefPubMedGoogle Scholar
  7. 7.
    Hinske LC, Galante PAF, Limbeck E, Möhnle P, Parmigiani RB, Ohno-Machado L et al (2015) Alternative polyadenylation allows differential negative feedback of human miRNA miR-579 on its host gene ZFR. PLoS One 10:e0121507CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Müller S, Rycak L, Afonso-Grunz F, Winter P, Zawada AM, Damrath E et al (2014) APADB: a database for alternative polyadenylation and microRNA regulation events. Database 2014.
  9. 9.
    Kreth S, Limbeck E, Hinske LC, Schütz SV, Thon N, Hoefig K et al (2013) In human glioblastomas transcript elongation by alternative polyadenylation and miRNA targeting is a potent mechanism of MGMT silencing. Acta Neuropathol 125:671–681CrossRefPubMedGoogle Scholar
  10. 10.
    Derti A, Garrett-Engele P, Macisaac KD, Stevens RC, Sriram S, Chen R et al (2012) A quantitative atlas of polyadenylation in five mammals. Genome Res 22:1173–1183CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhou X, Li R, Michal JJ, X-L W, Liu Z, Zhao H et al (2016) Accurate profiling of gene expression and alternative Polyadenylation with whole Transcriptome termini site sequencing (WTTS-Seq). Genetics 203:683–697CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Erson-Bensan AE, Can T (2016) Alternative polyadenylation: another foe in cancer. Mol Cancer Res 14:507–517CrossRefPubMedGoogle Scholar
  13. 13.
    Heyn J, Hinske LC, Ledderose C, Limbeck E, Kreth S (2013) Experimental miRNA target validation. Methods Mol Biol 936:83–90CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Max Hübner
    • 1
  • Pedro A. F. Galante
    • 1
  • Simone Kreth
    • 1
  • Ludwig Christian Hinske
    • 1
  1. 1.Department of AnaesthesiologyClinic of the University of MunichMunichGermany

Personalised recommendations