Exosomal MicroRNAs as Potential Biomarkers in Neuropsychiatric Disorders

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1733)

Abstract

This chapter will discuss the potential use of microRNAs, particularly those located in peripherally-isolated exosomes, as biomarkers in neuropsychiatric disorders. These extracellular vesicles are released as a form of cell-to-cell communication and may mediate the soma-to-germline transmission of brain-relevant information, thereby potentially contributing to the inter- or transgenerational transmission of behavioral traits. Recent novel methods allow for the enrichment of peripheral exosomes specifically released by neurons and astrocytes and may provide valuable brain-relevant biosignatures of disease.

Key words

Biomarkers Exosomes MicroRNA Neuropsychiatry Periphery Epigenetics 

References

  1. 1.
    Boksa P (2013) A way forward for research on biomarkers for psychiatric disorders. J Psychiatry Neurosci 38(2):75–77CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kobeissy F, Alawieh A, Mondello S et al (2012) Biomarkers in psychiatry: how close are we? Front Psych 3:114Google Scholar
  3. 3.
    Kichukova TM, Popov NT, Ivanov HY et al (2015) Circulating microRNAs as a novel class of potential diagnostic biomarkers in neuropsychiatric disorders. Folia Med (Plovdiv) 57(3–4):159–172Google Scholar
  4. 4.
    Lugli G, Cohen AM, Bennett DA et al (2015) Plasma Exosomal miRNAs in persons with and without Alzheimer disease: altered expression and prospects for biomarkers. PLoS One 10(10):e0139233CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zhang J, Li S, Li L et al (2015) Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 13(1):17–24CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Stoorvogel W (2012) Functional transfer of microRNA by exosomes. Blood 119(3):646–648CrossRefPubMedGoogle Scholar
  7. 7.
    Fabbri M, Paone A, Calore F et al (2012) MicroRNAs bind to toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A 109(31):E2110–E2116CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fries GR, Walss-Bass C, Quevedo J (2016) Non-genetic transgenerational transmission of bipolar disorder: targeting DNA methyltransferases. Mol Psychiatry 21(12):1653–1654CrossRefPubMedGoogle Scholar
  9. 9.
    Sharma A (2014) Bioinformatic analysis revealing association of exosomal mRNAs and proteins in epigenetic inheritance. J Theor Biol 357:143–149CrossRefPubMedGoogle Scholar
  10. 10.
    Nagy C, Turecki G (2015) Transgenerational epigenetic inheritance: an open discussion. Epigenomics 7(5):781–790CrossRefPubMedGoogle Scholar
  11. 11.
    Rekker K, Saare M, Roost AM et al (2014) Comparison of serum exosome isolation methods for microRNA profiling. Clin Biochem 47(1–2):135–138CrossRefPubMedGoogle Scholar
  12. 12.
    Taylor DD, Zacharias W, Gercel-Taylor C (2011) Exosome isolation for proteomic analyses and RNA profiling. Methods Mol Biol 728:235–246CrossRefPubMedGoogle Scholar
  13. 13.
    Huang X, Yuan T, Tschannen M et al (2013) Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics 14:319CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Schageman J, Zeringer E, Li M et al (2013) The complete exosome workflow solution: from isolation to characterization of RNA cargo. Biomed Res Int 2013:253957CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gholizadeh S, Shehata Draz M, Zarghooni M et al (2017) Microfluidic approaches for isolation, detection, and characterization of extracellular vesicles: current status and future directions. Biosens Bioelectron 91:588–605CrossRefPubMedGoogle Scholar
  16. 16.
    Rupert DL, Claudio V, Lässer C et al (2017) Methods for the physical characterization and quantification of extracellular vesicles in biological samples. Biochim Biophys Acta 1861(1 Pt A):3164–3179CrossRefPubMedGoogle Scholar
  17. 17.
    Xu R, Greening DW, Zhu HJ et al (2016) Extracellular vesicle isolation and characterization: toward clinical application. J Clin Invest 126(4):1152–1162CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sokolova V, Ludwig AK, Hornung S et al (2011) Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B Biointerfaces 87(1):146–150CrossRefPubMedGoogle Scholar
  19. 19.
    Goetzl EJ, Boxer A, Schwartz JB et al (2015) Low neural exosomal levels of cellular survival factors in Alzheimer's disease. Ann Clin Transl Neurol 2(7):769–773CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Goetzl EJ, Mustapic M, Kapogiannis D et al (2016) Cargo proteins of plasma astrocyte-derived exosomes in Alzheimer's disease. FASEB J 30(11):3853–3859CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lafourcade C, Ramírez JP, Luarte A et al (2016) MiRNAs in astrocyte-derived exosomes as possible mediators of neuronal plasticity. J Exp Neurosci 10(Suppl 1):1–9PubMedPubMedCentralGoogle Scholar
  22. 22.
    Davis J, Maes M, Andreazza A et al (2015) Towards a classification of biomarkers of neuropsychiatric disease: from encompass to compass. Mol Psychiatry 20(2):152–153CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical SchoolUniversity of Texas Health Science Center at Houston (UTHealth)HoustonUSA
  2. 2.Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical SchoolThe University of Texas Health Science Center at Houston (UTHealth)HoustonUSA
  3. 3.Neuroscience Graduate ProgramThe University of Texas Graduate School of Biomedical Sciences at HoustonHoustonUSA
  4. 4.Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences UnitUniversity of Southern Santa Catarina (UNESC)CriciúmaBrazil

Personalised recommendations