Advertisement

Isolation and Analysis of Exosomal MicroRNAs from Ovarian Follicular Fluid

  • Juliano Da Silveira
  • Gabriella M. Andrade
  • Felipe Perecin
  • Flávio Vieira Meireles
  • Quinton A. Winger
  • Gerrit J. Bouma
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1733)

Abstract

Mammalian ovarian follicular growth is characterized by development of a large fluid filled antrum that separates mural granulosa cells and cumulus cells. Extensive communication between the different cell types is necessary for maturation of a developmentally competent oocyte. Here, we describe an approach for the isolation of cell-secreted exosomes from ovarian follicular fluid, identification of small RNAs (i.e., microRNAs) in exosomes, labeling of exosomes, and examining cell uptake of exosomes by follicular cells.

Key words

Extracellular vesicles microRNAs Ovarian follicle 

Notes

Acknowledgments

We are grateful for the funding supporting the research involving exosomal microRNAs from CSU CVMBS College Research Council, the Preservation of Equine Genetics, Cecil and Irene Hylton Foundation, and financial support from the Abney Foundation, Ed H. Honnen Award, the France Stone Scholarship, and the Assisted Reproduction Program at Colorado State University. Additional support came from grants funded by São Paulo Research Foundation-FAPESP (grant 2012/50533-2; grant 2013/08135-2; grant 2014/21034-3, grant 2013/10473-3; and grant 2014/22887-0).

References

  1. 1.
    Bartel DP (2009) MicroRNAs:target recognition and regulatory functions. Cell 136:215–233CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Nagaraja AK, Andreu-vieyra C, Franco HL, Ma L, Chen R, Han DY, Zhu H, Agno JE, Gunaratne PH, Demayo FJ, Matzuk MM (2008) Deletion of Dicer in somatic cells of the female reproductive tract causes sterility. Mol Endocrinol 22:2336–2352CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Luense LJ, Carletti MZ, Christenson LK (2009) Role of Dicer in female fertility. Trends Endocrinol Metab 20:265–272CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Knight PG, Glister C (2006) TGF-β superfamily members and ovarian follicle development. Reproduction 132:191–206CrossRefPubMedGoogle Scholar
  5. 5.
    Revelli A, Delle Piane L, Casano S, Molinari E, Massobrio M, Rinaudo P (2009) Follicular fluid content and oocyte quality: from single biochemical markers to mtabolomics. Reprod Biol Endocrinol 7:4330–4337Google Scholar
  6. 6.
    Da Silveira JC, Veeramachaneni DN, Winger QA, Carnevale EM, Bouma GJ (2012) Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle1. Biol Reprod 86:71CrossRefPubMedGoogle Scholar
  7. 7.
    Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J, Martin-Cofreces N, Martinez-Herrera DJ, Pascual-Montano A, Mittelbrunn M, Sánchez-Madrid F (2013) Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nature Commun 4:2980. https://doi.org/10.1038/ncomms3980 CrossRefGoogle Scholar
  8. 8.
    Arita S, Baba E, Shibata Y, Niiro H, Shimoda S, Isobe T, Kusaba H, Nakano S, Harada M (2008) B cell activation regulates exosomal HLA production. Eur J Immunol 38:1423–1434CrossRefPubMedGoogle Scholar
  9. 9.
    Al-Dossary AA, Strehler EE, Martin-Deleon PA (2013) Expression and secretion of plasma membrane Ca2+-ATPase 4a (PMCA4a) during murine estrus: association with oviductal exosomes and uptake in sperm. PLoS One 8:e80181. https://doi.org/10.1371/journal.pone.0080181 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lopera-Vásquez R, Hamdi M, Fernandez-Fuertes B, Maillo V, Beltrán-Breña P, Calle A, Redruello A, López-Martín S, Gutierrez-Adán A, Yañez-Mó M, Ramirez MÁ, Rizos D (2016) Extracellular vesicles from BOEC in in vitro embryo development and quality. PLoS One 11:e0148083. https://doi.org/10.1371/journal.pone.0148083 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Burns G, Brooks K, Wildung M, Navakanitworakul R, Christenson LK, Spencer TE (2014) Extracellular vesicles in luminal fluid of the ovine uterus. PLoS One 9:e90913. https://doi.org/10.1371/journal.pone.0090913 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Campoy I, Lanau L, Altadill T, Sequeiros T, Cabrera S, Cubo-Abert P-BA, Garcia A, Borrós S, Santamaria A, Ponce J, Matias-Guiu X, Reventós J, Gil-Moreno A, Rigau M, Colas E (2016) Exosome-like vesicles in uterine aspirates: a comparison of ultracentrifugation-based isolation protocols. J Transl Med 14:180. https://doi.org/10.1186/s12967-016-0935-4 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Carnevale EM, Ramirez RJ, Squires EL, Alvarenga MA, Vanderwall DK, McCue PM (2000) Factors affecting pregnancy rates and early embryonic death after equine embryo transfer. Theriogenology 54:965–979CrossRefPubMedGoogle Scholar
  14. 14.
    Pritchard CC, Cheng HH, Tewari M (2012) MicroRNA profiling: approaches and considerations. Nat Rev Genet 13:358–369CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73CrossRefPubMedGoogle Scholar
  16. 16.
    Portela VM, Zamberlam G, Price CA (2010) Cell plating density alters the ratio of estrogenic to progestagenic enzyme gene expression in cultured granulosa cells. Fertil Steril 93:2050–2055CrossRefPubMedGoogle Scholar
  17. 17.
    da Silveira JC, Carnevale EM, Winger QA, Bouma GJ (2014) Regulation of ACVR1 and ID2 by cell-secreted exosomes during follicle maturation in the mare. Reprod Biol Endocrinol 12:44CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    da Silveira JC, Winger QA, Bouma GJ, Carnevale EM (2015) Effects of age on follicular fluid exosomal microRNAs and granulosa cell transforming growth factor-β signalling during follicle development in the mare. Reprod Fertil Dev 27:897–905CrossRefPubMedGoogle Scholar
  19. 19.
    Vlachos IS, Kostoulas N, Vergoulis T, Georgakilas G, Reczko M, Maragkakis M, Paraskevopoulou MD, Prionidis K, Dalamagas T, Hatzigeorgiou AG (2012) miRPath v. 2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res 40:W498–W504CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chou CH, Chang NW, Shrestha S, Hsu SD, Lin YL, Lee WH, Yang CD, Hong HC, Wei TY, SJ T, Tsai TR, Ho SY, Jian TY, HY W, Chen PR, Lin NC, Huang HT, Yang TL, Pai CY, Tai CS, Chen WL, Huang CY, Liu CC, Weng SL, Liao KW, Hsu WL, Huang HD (2016) miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res 44:D239–D247CrossRefPubMedGoogle Scholar
  21. 21.
    Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4:e05005. https://doi.org/10.7554/eLife.05005 CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Juliano Da Silveira
    • 1
  • Gabriella M. Andrade
    • 1
  • Felipe Perecin
    • 1
  • Flávio Vieira Meireles
    • 1
  • Quinton A. Winger
    • 2
  • Gerrit J. Bouma
    • 2
  1. 1.Faculty of Animal Sciences and Food Engineering, Department of Veterinary MedicineUniversity of Sao PauloPirassunungaBrazil
  2. 2.College of Veterinary and Biomedical Sciences, Department of Biomedical Sciences, Animal Reproduction and Biotechnology LaboratoryColorado State UniversityFort CollinsUSA

Personalised recommendations