Mechanism and Method for Generating Tumor-Free iPS Cells Using Intronic MicroRNA miR-302 Induction

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1733)

Abstract

Today’s researchers generating induced pluripotent stem cells (iPS cells or iPSCs) usually consider their pluripotency rather than potential tumorigenicity. Oncogenic factors such as c-Myc and Klf4 are frequently used to boost the survival and proliferative rates of iPSCs, creating an inevitable problem of tumorigenicity that hinders the therapeutic usefulness of these iPSCs. To prevent stem cell tumorigenicity, we have examined mechanisms by which the cell cycle genes are regulated in embryonic stem cells (ESCs). Naturally, ESCs possess two unique stemness properties: pluripotent differentiation into almost all cell types and unlimited self-renewal without the risk of tumor formation. These two features are also important for the use of ESCs or iPSCs in therapy. Currently, despite overwhelming reports describing iPSC pluripotency, there is no report of any tumor prevention mechanism in either ESCs or iPSCs. To this, our studies have revealed for the first time that an ESC-specific microRNA (miRNA), miR-302, regulates human iPSC tumorigenicity through cosuppression of both cyclin E-CDK2 and cyclin D-CDK4/6 cell cycle pathways during G1-S phase transition. Moreover, miR-302 also silences BMI-1, a cancer stem cell gene marker, to promote the expression of two senescence-associated tumor suppressor genes, p16Ink4a and p14/p19Arf. Together, the combinatory effects of inhibiting G1-S cell cycle transition and increasing p16/p14(p19) expression result in an attenuated cell cycle rate similar to that of 2-to-8-cell-stage embryonic cells in early zygotes (20–24 h/cycle), which is however slower than the fast proliferation rate of iPSCs induced by the four defined factors Oct4-Sox2-Klf4-c-Myc (12–16 h/cycle). These findings provide a means to control iPSC tumorigenicity and improve the safety of iPSCs for the therapeutic use. In this chapter, we review the mechanism underlying miR-302-mediated tumor suppression and then demonstrate how to apply this mechanism to generate tumor-free iPSCs. The same strategy may also be used to prevent ESC tumorigenicity.

Key words

miR-302 MicroRNA (miRNA) Tumor suppressor iPSC ESC Stem cell Cell cycle CDK2 CDK4/6 Cyclin D BMI-1 p16Ink4a p14/p19Arf p21Cip1/Waf1 CDKN1A RNAi 

References

  1. 1.
    Lin SL, Chang D, Chang-Lin S, Lin CH, Wu DTS, Chen DT, Ying SY (2008) Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA 14:2115–2124CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lin SL, Chang D, Lin CH, Ying SY, Leu D, Wu DTS (2011) Regulation of somatic cell reprogramming through inducible mir-302 expression. Nucleic Acids Res 39:1054–1065CrossRefPubMedGoogle Scholar
  3. 3.
    Lin SL, Chang D, Ying SY, Leu D, Wu DTS (2010) MicroRNA miR-302 inhibits the tumorigenecity of human pluripotent stem cells by coordinate suppression of CDK2 and CDK4/6 cell cycle pathways. Cancer Res 70:9473–9482CrossRefPubMedGoogle Scholar
  4. 4.
    Li Y, Pei J, Xia H, Ke H, Wang H, Tao W (2003) Lats2, a putative tumor suppressor, inhibits G1/S transition. Oncogene 22:4398–4405CrossRefPubMedGoogle Scholar
  5. 5.
    Ying SY, Lin SL (2004) Intron-derived microRNAs -- fine tuning of gene functions. Gene 342:25–28CrossRefPubMedGoogle Scholar
  6. 6.
    Becker KA, Ghule PN, Therrien JA, Lian JB, Stein JL, van Wijnen AJ, Stein GS (2006) Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase. J Cell Physiol 209:883–893CrossRefPubMedGoogle Scholar
  7. 7.
    Hanna J, Saha K, Pando B, van Zon J, Lengner CJ, Creyghton MP, van Oudenaarden A, Jaenisch R (2009) Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462:595–601CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rowland BD, Bernards R, Peeper DS (2005) The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol 7:1074–1082CrossRefPubMedGoogle Scholar
  9. 9.
    Jiang J, Chan YS, Loh YH, Cai J, Tong GQ, Lim CA, Robson P, Zhong S, Ng HH (2008) A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol 10:353–360CrossRefPubMedGoogle Scholar
  10. 10.
    Kim J, Chu J, Shen X, Wang J, Orkin SH (2008) An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132:1049–1061CrossRefPubMedGoogle Scholar
  11. 11.
    Nandan MO, Yang VW (2009) The role of Krüppel-like factors in the reprogramming of somatic cells to induced pluripotent stem cells. Histol Histopathol 24:1343–1355PubMedPubMedCentralGoogle Scholar
  12. 12.
    Parry D, Bates S, Mann DJ, Peters G (1995) Lack of cyclin D–Cdk complexes in Rb-negative cells correlated with high levels of p16INK4/MTS1 tumor suppressor gene product. EMBO J 14:503–511PubMedPubMedCentralGoogle Scholar
  13. 13.
    Quelle DE, Zindy F, Ashmun RA, Sherr CJ (1995) Alternative reading frames of the NK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83:993–1000CrossRefPubMedGoogle Scholar
  14. 14.
    Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA, Grosveld G, Sherr CJ (1997) Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91:649–659CrossRefPubMedGoogle Scholar
  15. 15.
    Chan MF, van Amerongen R, Nijjar T, Cuppen E, Jones PA, Laird PW (2001) Reduced rates of gene loss, gene silencing, and gene mutation in Dnmt1-deficient embryonic stem cells. Mol Cell Biol 21:7587–7600CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Banito A, Rashid ST, Acosta JC, Li S, Pereira CF, Geti I, Pinho S, Silva JC, Azuara V, Walsh M, Vallier L, Gil J (2009) Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev 23:2134–2139CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Feng Q, Lu SJ, Klimanskaya I, Gomes I, Kim D, Chung Y, Honig GR, Kim KS, Lanza R (2010) Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells 28:704–712CrossRefPubMedGoogle Scholar
  18. 18.
    Li H, Collado M, Villasante A, Strati K, Ortega S, Cañamero M, Blasco MA, Serrano M (2009) The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460:1136–1139CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM, Khalil A, Rheinwald JG, Hochedlinger K (2009) Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 460:1145–1148CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Marión RM, Strati K, Li H, Murga M, Blanco R, Ortega S, Fernandez-Capetillo O, Serrano M, Blasco MA (2009) A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460:1149–1153CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Won J, Yim J, Kim TK (2002) Sp1 and Sp3 recruit histone deacetylase to repress transcription of human telomerase reverse transcriptase (hTERT) promoter in normal human somatic cells. J Biol Chem 277(38):230–238Google Scholar
  22. 22.
    Zhu O, Liu C, Ge Z, Fang X, Zhang X, Straat K, Bjorkholm M, Xu D (2008) Lysine-specific demethylase 1 (LSD1) is required for the transcriptional repression of the telomerase reverse transcriptase (hTERT) gene. PLoS One 3:e1446CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lin SL, Chang D, DY W, Ying SY (2003) A novel RNA splicing-mediated gene silencing mechanism potential for genome evolution. Biochem Biophys Res Commun 310:754–760CrossRefPubMedGoogle Scholar
  24. 24.
    Lin SL, Kim H, Ying SY (2008) Intron-mediated RNA interference and microRNA (miRNA). Front Biosci 13:2216–2230CrossRefPubMedGoogle Scholar
  25. 25.
    Barroso-delJesus A, Romero-López C, Lucena-Aguilar G, Melen GJ, Sanchez L, Ligero G, Berzal-Herranz A, Menendez P (2008) Embryonic stem cell-specific miR302-367 cluster: human gene structure and functional characterization of its core promoter. Mol Cell Biol 28:6609–6619CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY, Cha KY, Chung HM, Yoon HS, Moon SY, Kim VN, Kim KS (2004) Human embryonic stem cells express a unique set of microRNAs. Dev Biol 270:488–498CrossRefPubMedGoogle Scholar
  27. 27.
    Lin SL, Ying SY (2006) Gene silencing in vitro and in vivo using intronic microRNAs. In: Ying SY (ed) MicroRNA protocols. Humana, Totowa, NJ, pp 295–312CrossRefGoogle Scholar
  28. 28.
    Lin SL, Chang D, Ying SY (2005) Asymmetry of intronic pre-microRNA structures in functional RISC assembly. Gene 356:32–38CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Danin-Kreiselman M, Lee CY, Chanfreau G (2003) RNAse III-mediated degradation of unspliced pre-mRNAs and lariat introns. Mol Cell 11:1279–1289CrossRefPubMedGoogle Scholar
  30. 30.
    Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science 303:95–98CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang G, Taneja KL, Singer RH, Green MR (1994) Localization of pre-mRNA splicing in mammalian nuclei. Nature 372:809–812CrossRefPubMedGoogle Scholar
  33. 33.
    Lewis BP, Green RE, Brenner SE (2003) Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci U S A 100:189–192CrossRefPubMedGoogle Scholar
  34. 34.
    Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, Marion P, Salazar F, Kay MA (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441:537–541CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Division of Regenerative MedicineWJWU & LYNN Institute for Stem Cell ResearchSanta Fe SpringsUSA
  2. 2.Department of Integrative Anatomical Sciences, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations