Laser Capture Microdissection of Epithelium from a Wound Healing Model for MicroRNA Analysis

  • Alyne Simões
  • Zujian Chen
  • Yan Zhao
  • Lin Chen
  • Virgilia Macias
  • Luisa A. DiPietro
  • Xiaofeng Zhou
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1733)

Abstract

MicroRNAs are ~22 nucleotide-long noncoding RNAs influencing many cellular processes (including wound healing) by their regulatory functions on gene expression. The ability to analyze microRNA in different cells at the wound site is essential for understanding the critical role(s) of microRNA during various phases of wound healing. Laser capture micro-dissection (LCM) is an effective method to distinguish between relevant and non-relevant cells or tissues and enables the researcher to obtain homogeneous, ultra-pure samples from heterogeneous starting material. We present here our protocol for procuring epithelial cells from a mouse wound healing model using a Leica LMD7000 Laser Microdissection system, as well as the RNA isolation and downstream microRNA analysis. Using this method, researchers can selectively and routinely analyze regions of interest down to single cells to obtain results that are relevant, reproducible, and specific.

Key words

LCM MicroRNA Wound healing RNA isolation Epithelial cells Mouse Frozen sample 

Notes

Acknowledgment

This work was supported in part by NIH PHS grants (R21DE025926, R03CA171436, R01GM50875, and S10RR026493) and a Lilly USA Research Award in Cancer Prevention and Early Detection. Dr. Alyne Simões was supported by a scholarship from São Paulo Research Foundation (2016/16332-0). We thank Dr. Wendy Cerny for editorial assistance.

References

  1. 1.
    Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta LA (1996) Laser capture microdissection. Science 274(5289):998–1001CrossRefPubMedGoogle Scholar
  2. 2.
    Best CJ, Emmert-Buck MR (2001) Molecular profiling of tissue samples using laser capture microdissection. Expert Rev Mol Diagn 1(1):53–60. https://doi.org/10.1586/14737159.1.1.53 CrossRefPubMedGoogle Scholar
  3. 3.
    Liu A (2010) Laser capture microdissection in the tissue biorepository. J Biomol Tech 21(3):120–125PubMedPubMedCentralGoogle Scholar
  4. 4.
    Gautam V, Singh A, Singh S, Sarkar AK (2016) An efficient LCM-based method for tissue specific expression analysis of genes and miRNAs. Sci Rep 6:21577. https://doi.org/10.1038/srep21577 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Espina V, Wulfkuhle JD, Calvert VS, VanMeter A, Zhou W, Coukos G, Geho DH, Petricoin EF III, Liotta LA (2006) Laser-capture microdissection. Nat Protoc 1(2):586–603. https://doi.org/10.1038/nprot.2006.85 CrossRefPubMedGoogle Scholar
  6. 6.
    Fahs F, Bi X, Yu FS, Zhou L, Mi QS (2015) New insights into microRNAs in skin wound healing. IUBMB Life 67(12):889–896. https://doi.org/10.1002/iub.1449 CrossRefPubMedGoogle Scholar
  7. 7.
    Pastar I, Khan AA, Stojadinovic O, Lebrun EA, Medina MC, Brem H, Kirsner RS, Jimenez JJ, Leslie C, Tomic-Canic M (2012) Induction of specific microRNAs inhibits cutaneous wound healing. J Biol Chem 287(35):29324–29335. https://doi.org/10.1074/jbc.M112.382135 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Eming SA, Tomic-Canic M (2017) Updates in wound healing: mechanisms and translation. Exp Dermatol 26(2):97–98. https://doi.org/10.1111/exd.13281 CrossRefPubMedGoogle Scholar
  9. 9.
    Chen L, Arbieva ZH, Guo S, Marucha PT, Mustoe TA, DiPietro LA (2010) Positional differences in the wound transcriptome of skin and oral mucosa. BMC Genomics 11:471. https://doi.org/10.1186/1471-2164-11-471 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Turabelidze A, Guo S, Chung AY, Chen L, Dai Y, Marucha PT, DiPietro LA (2014) Intrinsic differences between oral and skin keratinocytes. PLoS One 9(9):e101480. https://doi.org/10.1371/journal.pone.0101480 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Jin Y, Tymen SD, Chen D, Fang ZJ, Zhao Y, Dragas D, Dai Y, Marucha PT, Zhou X (2013) MicroRNA-99 family targets AKT/mTOR signaling pathway in dermal wound healing. PLoS One 8(5):e64434. https://doi.org/10.1371/journal.pone.0064434 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chen D, Chen Z, Jin Y, Dragas D, Zhang L, Adjei BS, Wang A, Dai Y, Zhou X (2013) MicroRNA-99 family members suppress Homeobox A1 expression in epithelial cells. PLoS One 8(12):e80625. https://doi.org/10.1371/journal.pone.0080625 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Alyne Simões
    • 1
    • 2
  • Zujian Chen
    • 3
  • Yan Zhao
    • 1
  • Lin Chen
    • 1
  • Virgilia Macias
    • 4
  • Luisa A. DiPietro
    • 1
    • 5
  • Xiaofeng Zhou
    • 1
    • 3
    • 5
    • 6
  1. 1.Center for Wound Healing & Tissue Regeneration, Department of Periodontics, College of DentistryUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Oral Biology Laboratory, Department of Biomaterials and Oral Biology, School of DentistryUniversity of São PauloSão PauloBrazil
  3. 3.Center for Molecular Biology of Oral Diseases, Department of Periodontics, College of DentistryUniversity of Illinois at ChicagoChicagoUSA
  4. 4.Department of Pathology, College of MedicineUniversity of Illinois at ChicagoChicagoUSA
  5. 5.Graduate CollegeUniversity of Illinois at ChicagoChicagoUSA
  6. 6.UIC Cancer CenterUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations