Neonatal Rat Cardiomyocytes Isolation, Culture, and Determination of MicroRNAs’ Effects in Proliferation

  • Lichan Tao
  • Yihua Bei
  • Yongqin Li
  • Junjie Xiao
Part of the Methods in Molecular Biology book series (MIMB, volume 1733)


Cardiomyocytes loss is a major contributor for many cardiovascular diseases including heart failure and myocardial infarction. Although extremely limited, adult cardiomyocytes are able to proliferate. Understanding the molecular mechanisms controlling cardiomyocytes proliferation is extremely important for enhancing cardiomyocyte proliferation to promote cardiac regeneration and repair. MicroRNAs (miRNAs, miRs) are powerful controllers of many essential biological processes including cell proliferation. Here, we described in detail a protocol for isolation and culture of neonatal rat cardiomyocytes and the determination of miRNAs’ effects in proliferation based on two well-established methods including EdU and Ki67 immunofluorescent stainings.

Key words

Cardiomyocyte MicroRNA Proliferation Ki67 EdU 



This work was supported by the grants from National Natural Science Foundation of China (81570362, 91639101, and 81200169 to J.J. Xiao and 81400647 to Y. Bei), Innovation Program of Shanghai Municipal Education Commission (2017-01-07-00-09-E00042), the grant from Science and Technology Commission of Shanghai Municipality (17010500100), and the development fund for Shanghai talents (to J.J. Xiao).


  1. 1.
    Yutzey KE (2017) Cardiomyocyte proliferation: teaching an old dogma new tricks. Circ Res 120:627–629CrossRefPubMedGoogle Scholar
  2. 2.
    Foglia MJ, Poss KD (2016) Building and re-building the heart by cardiomyocyte proliferation. Development 143:729–740CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Walsh S, Ponten A, Fleischmann BK, Jovinge S (2010) Cardiomyocyte cell cycle control and growth estimation in vivo – an analysis based on cardiomyocyte nuclei. Cardiovasc Res 86:365–373CrossRefPubMedGoogle Scholar
  4. 4.
    Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA (2011) Transient regenerative potential of the neonatal mouse heart. Science 331:1078–1080CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    van Berlo JH, Molkentin JD (2014) An emerging consensus on cardiac regeneration. Nat Med 20:1386–1393CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Liu X, Xiao J, Zhu H, Wei X, Platt C, Damilano F, Xiao C, Bezzerides V, Bostrom P, Che L, Zhang C, Spiegelman BM, Rosenzweig A (2015) miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab 21:584–595CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisén J (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu TD, Guerquin-Kern JL, Lechene CP, Lee RT (2013) Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493:433–436CrossRefPubMedGoogle Scholar
  9. 9.
    Malliaras K, Zhang Y, Seinfeld J, Galang G, Tseliou E, Cheng K, Sun B, Aminzadeh M, Marban E (2013) Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart. EMBO Mol Med 5:191–209CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Koitabashi N, Kass DA (2011) Reverse remodeling in heart failure – mechanisms and therapeutic opportunities. Nat Rev Cardiol 9:147–157CrossRefPubMedGoogle Scholar
  11. 11.
    Louch WE, Sheehan KA, Wolska BM (2011) Methods in cardiomyocyte isolation, culture, and gene transfer. J Mol Cell Cardiol 51:288–298CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    LaFramboise WA, Scalise D, Stoodley P, Graner SR, Guthrie RD, Magovern JA, Becich MJ (2007) Cardiac fibroblasts influence cardiomyocyte phenotype in vitro. Am J Physiol Cell Physiol 292:C1799–C1808CrossRefPubMedGoogle Scholar
  13. 13.
    Dispersyn GD, Geuens E, Ver Donck L, Ramaekers FC, Borgers M (2001) Adult rabbit cardiomyocytes undergo hibernation-like dedifferentiation when co-cultured with cardiac fibroblasts. Cardiovasc Res 51:230–240CrossRefPubMedGoogle Scholar
  14. 14.
    Miragoli M, Salvarani N, Rohr S (2007) Myofibroblasts induce ectopic activity in cardiac tissue. Circ Res 101:755–758PubMedGoogle Scholar
  15. 15.
    Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A 105:2415–2420CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Tao L, Bei Y, Chen P, Lei Z, Fu S, Zhang H, Xu J, Che L, Chen X, Sluijter JP, Das S, Cretoiu D, Xu B, Zhong J, Xiao J, Li X (2016) Crucial role of miR-433 in regulating cardiac fibrosis. Theranostics 6:2068–2083CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Pathmanathan N, Balleine RL (2013) Ki67 and proliferation in breast cancer. J Clin Pathol 66(6):512CrossRefPubMedGoogle Scholar
  18. 18.
    Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, Giacca M (2012) Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492:376–381CrossRefPubMedGoogle Scholar
  19. 19.
    Shi J, Bei Y, Kong X, Liu X, Lei Z, Xu T, Wang H, Xuan Q, Chen P, Xu J, Che L, Liu H, Zhong J, Sluijter JP, Li X, Rosenzweig A, Xiao J (2017) miR-17-3p contributes to exercise-induced cardiac growth and protects against myocardial ischemia-reperfusion injury. Theranostics 7:664–676CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Piccoli MT, Gupta SK, Thum T (2015) Noncoding RNAs as regulators of cardiomyocyte proliferation and death. J Mol Cell Cardiol 89:59–67CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Lichan Tao
    • 1
  • Yihua Bei
    • 2
  • Yongqin Li
    • 2
  • Junjie Xiao
    • 2
  1. 1.Department of CardiologyThe Third Affiliated Hospital of Soochow UniversityChangzhouChina
  2. 2.Cardiac Regeneration and Ageing Lab, School of Life ScienceShanghai UniversityShanghaiChina

Personalised recommendations