Mining Exosomal MicroRNAs from Human-Induced Pluripotent Stem Cells-Derived Cardiomyocytes for Cardiac Regeneration

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1733)

Abstract

Myocardial infarction is the leading cause of morbidity and mortality worldwide. Recent advances in cardiac regenerative therapy have allowed for novel modalities in replenishing the damaged myocardium. However, poor long-term engraftment and survival of transplanted cells have largely precluded effective cell replacement. As an alternative to direct cell replacement, the release of paracrine protective factors may be a more plausible effector for cardioprotection which may partially be mediated through secretion of microvesicles, or exosomes, that contribute to cell-cell communication. In this chapter, we describe the isolation of exosomes from induced pluripotent stem cells-derived cardiomyocytes for subsequent microRNA profiling for a better understanding of the biological cargo contained within exosomes.

Key words

Exosomes iPSC-CMs microRNA Stem cell Heart 

Notes

Acknowledgments

We are grateful for the funding support from National Institutes of Health (NIH) Pathway to Independence Award K99 HL130416, Stanford Child Health Research Institute and the Stanford NIH-NCATS-CTSA grant UL1 TR001085 (S.G.O.), American Heart Association (AHA) 16SDG27560003 (W.H.L.), AHA 17MERIT33610009, NIH R01 HL133272, NIH R01 113006, NIH R01 HL123968, NIH R01 HL132875, California Institute of Regenerative Medicine (CIRM) DR2A-05394 and CIRM RT3-07798 (J.C.W.).

References

  1. 1.
    Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, Isasi CR, Jimenez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Mackey RH, Matsushita K, Mozaffarian D, Mussolino ME, Nasir K, Neumar RW, Palaniappan L, Pandey DK, Thiagarajan RR, Reeves MJ, Ritchey M, Rodriguez CJ, Roth GA, Rosamond WD, Sasson C, Towfighi A, Tsao CW, Turner MB, Virani SS, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P, American Heart Association Statistics C, Stroke Statistics S (2017) Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135(10):e146–e603. https://doi.org/10.1161/CIR.0000000000000485 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Matsa E, Sallam K, Wu JC (2014) Cardiac stem cell biology: glimpse of the past, present, and future. Circ Res 114(1):21–27. https://doi.org/10.1161/CIRCRESAHA.113.302895 CrossRefPubMedGoogle Scholar
  3. 3.
    Noiseux N, Gnecchi M, Lopez-Ilasaca M, Zhang L, Solomon SD, Deb A, Dzau VJ, Pratt RE (2006) Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther 14(6):840–850. https://doi.org/10.1016/j.ymthe.2006.05.016 CrossRefPubMedGoogle Scholar
  4. 4.
    Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S, Beache GM, Wagner SG, Leri A, Hosoda T, Sanada F, Elmore JB, Goichberg P, Cappetta D, Solankhi NK, Fahsah I, Rokosh DG, Slaughter MS, Kajstura J, Anversa P (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378(9806):1847–1857. https://doi.org/10.1016/S0140-6736(11)61590-0 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O’Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold J, Murry CE (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25(9):1015–1024. https://doi.org/10.1038/nbt1327 CrossRefPubMedGoogle Scholar
  6. 6.
    Shiba Y, Fernandes S, Zhu WZ, Filice D, Muskheli V, Kim J, Palpant NJ, Gantz J, Moyes KW, Reinecke H, Van Biber B, Dardas T, Mignone JL, Izawa A, Hanna R, Viswanathan M, Gold JD, Kotlikoff MI, Sarvazyan N, Kay MW, Murry CE, Laflamme MA (2012) Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 489(7415):322–325. https://doi.org/10.1038/nature11317 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ong SG, Huber BC, Lee WH, Kodo K, Ebert AD, Ma Y, Nguyen PK, Diecke S, Chen WY, Wu JC (2015) Microfluidic single-cell analysis of transplanted human induced pluripotent stem cell-derived cardiomyocytes after acute myocardial infarction. Circulation 132(8):762–771. https://doi.org/10.1161/CIRCULATIONAHA.114.015231 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ong SG, Wu JC (2015) Exosomes as potential alternatives to stem cell therapy in mediating cardiac regeneration. Circ Res 117(1):7–9. https://doi.org/10.1161/CIRCRESAHA.115.306593 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383. https://doi.org/10.1083/jcb.201211138 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Harding CV, Heuser JE, Stahl PD (2013) Exosomes: looking back three decades and into the future. J Cell Biol 200(4):367–371. https://doi.org/10.1083/jcb.201212113 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ong SG, Lee WH, Huang M, Dey D, Kodo K, Sanchez-Freire V, Gold JD, Wu JC (2014) Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer. Circulation 130(11 Suppl 1):S60–S69. https://doi.org/10.1161/CIRCULATIONAHA.113.007917 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659. https://doi.org/10.1038/ncb1596 CrossRefPubMedGoogle Scholar
  13. 13.
    Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, Becker A, Hoshino A, Mark MT, Molina H, Xiang J, Zhang T, Theilen TM, Garcia-Santos G, Williams C, Ararso Y, Huang Y, Rodrigues G, Shen TL, Labori KJ, Lothe IM, Kure EH, Hernandez J, Doussot A, Ebbesen SH, Grandgenett PM, Hollingsworth MA, Jain M, Mallya K, Batra SK, Jarnagin WR, Schwartz RE, Matei I, Peinado H, Stanger BZ, Bromberg J, Lyden D (2015) Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 17(6):816–826. https://doi.org/10.1038/ncb3169 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335. https://doi.org/10.1038/nature15756 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Feng Y, Huang W, Wani M, Yu X, Ashraf M (2014) Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One 9(2):e88685. https://doi.org/10.1371/journal.pone.0088685 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ibrahim AG, Cheng K, Marban E (2014) Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Rep 2(5):606–619. https://doi.org/10.1016/j.stemcr.2014.04.006 CrossRefGoogle Scholar
  17. 17.
    Chen L, Wang Y, Pan Y, Zhang L, Shen C, Qin G, Ashraf M, Weintraub N, Ma G, Tang Y (2013) Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochem Biophys Res Commun 431(3):566–571. https://doi.org/10.1016/j.bbrc.2013.01.015 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Barile L, Lionetti V, Cervio E, Matteucci M, Gherghiceanu M, Popescu LM, Torre T, Siclari F, Moccetti T, Vassalli G (2014) Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res 103(4):530–541. https://doi.org/10.1093/cvr/cvu167 CrossRefPubMedGoogle Scholar
  19. 19.
    Sahoo S, Klychko E, Thorne T, Misener S, Schultz KM, Millay M, Ito A, Liu T, Kamide C, Agrawal H, Perlman H, Qin G, Kishore R, Losordo DW (2011) Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circ Res 109(7):724–728. https://doi.org/10.1161/CIRCRESAHA.111.253286 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yu B, Kim HW, Gong M, Wang J, Millard RW, Wang Y, Ashraf M, Xu M (2015) Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. Int J Cardiol 182:349–360. https://doi.org/10.1016/j.ijcard.2014.12.043 CrossRefPubMedGoogle Scholar
  21. 21.
    Khan M, Nickoloff E, Abramova T, Johnson J, Verma SK, Krishnamurthy P, Mackie AR, Vaughan E, Garikipati VN, Benedict C, Ramirez V, Lambers E, Ito A, Gao E, Misener S, Luongo T, Elrod J, Qin G, Houser SR, Koch WJ, Kishore R (2015) Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ Res 117(1):52–64. https://doi.org/10.1161/CIRCRESAHA.117.305990 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD, Lan F, Diecke S, Huber B, Mordwinkin NM, Plews JR, Abilez OJ, Cui B, Gold JD, Wu JC (2014) Chemically defined generation of human cardiomyocytes. Nat Methods 11(8):855–860. https://doi.org/10.1038/nmeth.2999 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Stanford Cardiovascular InstituteStanford University School of MedicineStanfordUSA

Personalised recommendations