Skip to main content

Cancer Susceptibility Models in Protease-Deficient Mice

  • Protocol
  • First Online:
Book cover Proteases and Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1731))

Abstract

For decades, proteases have been associated with cancer progression due to the ability of some members of this large group of enzymes to degrade tumor cell surroundings, thereby facilitating cancer invasion and dissemination. However, the generation of mouse models deficient in proteases has revealed the existence of a great variety of functions among proteolytic enzymes in cancer biology, including important tumor-suppressive roles. Therefore, in this chapter, we describe methods to chemically induce different types of cancer (lung adenocarcinoma, hepatocellular carcinoma, oral and esophageal carcinoma, colorectal carcinoma, skin cancer, and fibrosarcoma) in genetically modified mouse models to efficiently evaluate the specific pro- or antitumoral function of proteases in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. López-Otín C, Overall CM (2002) Protease degradomics: a new challenge for proteomics. Nat Rev Mol Cell Biol 3(7):509–519. https://doi.org/10.1038/nrm858

    Article  PubMed  Google Scholar 

  2. Puente XS, Sánchez LM, Overall CM et al (2003) Human and mouse proteases: a comparative genomic approach. Nat Rev Genet 4(7):544–558. https://doi.org/10.1038/nrg1111

    Article  CAS  PubMed  Google Scholar 

  3. Mason SD, Joyce JA (2011) Proteolytic networks in cancer. Trends Cell Biol 21(4):228–237. https://doi.org/10.1016/j.tcb.2010.12.002

    Article  CAS  PubMed  Google Scholar 

  4. Kruger A (2009) Functional genetic mouse models: promising tools for investigation of the proteolytic internet. Biol Chem 390(2):91–97. https://doi.org/10.1515/BC.2009.015

    Article  PubMed  Google Scholar 

  5. Quirós PM, Langer T, López-Otín C (2015) New roles for mitochondrial proteases in health, ageing and disease. Nat Rev Mol Cell Biol 16(6):345–359. https://doi.org/10.1038/nrm3984

    Article  PubMed  Google Scholar 

  6. Cal S, Lopez-Otin C (2015) ADAMTS proteases and cancer. Matrix Biol 44-46:77–85. https://doi.org/10.1016/j.matbio.2015.01.013

    Article  CAS  PubMed  Google Scholar 

  7. Fraile JM, Quesada V, Rodríguez D et al (2012) Deubiquitinases in cancer: new functions and therapeutic options. Oncogene 31(19):2373–2388. https://doi.org/10.1038/onc.2011.443

    Article  CAS  PubMed  Google Scholar 

  8. Freitas-Rodríguez S, Folgueras AR, López-Otín C (2017) The role of matrix metalloproteinases in aging: tissue remodeling and beyond. Biochim Biophys Acta 1864(11 Pt A):2015–2025

    Article  PubMed  Google Scholar 

  9. Folgueras AR, Pendás AM, Sánchez LM et al (2004) Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies. Int J Dev Biol 48(5-6):411–424. https://doi.org/10.1387/ijdb.041811af

    Article  CAS  PubMed  Google Scholar 

  10. Affara NI, Andreu P, Coussens LM (2009) Delineating protease functions during cancer development. Methods Mol Biol 539:1–32. https://doi.org/10.1007/978-1-60327-003-8_1

    Article  CAS  PubMed  Google Scholar 

  11. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67. https://doi.org/10.1016/j.cell.2010.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sevenich L, Joyce JA (2014) Pericellular proteolysis in cancer. Genes Dev 28(21):2331–2347. https://doi.org/10.1101/gad.250647.114

    Article  PubMed  PubMed Central  Google Scholar 

  13. López-Otín C, Matrisian LM (2007) Emerging roles of proteases in tumour suppression. Nat Rev Cancer 7(10):800–808. https://doi.org/10.1038/nrc2228

    Article  PubMed  Google Scholar 

  14. Fanjul-Fernández M, Folgueras AR, Cabrera S et al (2010) Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochim Biophys Acta 1803(1):3–19. https://doi.org/10.1016/j.bbamcr.2009.07.004

    Article  PubMed  Google Scholar 

  15. Balbín M, Fueyo A, Tester AM et al (2003) Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet 35(3):252–257. https://doi.org/10.1038/ng1249

    Article  PubMed  Google Scholar 

  16. Fanjul-Fernández M, Folgueras AR, Fueyo A et al (2013) Matrix metalloproteinase Mmp-1a is dispensable for normal growth and fertility in mice and promotes lung cancer progression by modulating inflammatory responses. J Biol Chem 288(20):14647–14656. https://doi.org/10.1074/jbc.M112.439893

    Article  PubMed  PubMed Central  Google Scholar 

  17. de la Rosa J, Freije JM, Cabanillas R et al (2013) Prelamin A causes progeria through cell-extrinsic mechanisms and prevents cancer invasion. Nat Commun 4:2268. https://doi.org/10.1038/ncomms3268

    PubMed  PubMed Central  Google Scholar 

  18. Fraile JM, Campos-Iglesias D, Rodríguez F et al (2016) The deubiquitinase USP54 is overexpressed in colorectal cancer stem cells and promotes intestinal tumorigenesis. Oncotarget 7(46):74427–74434. 10.18632/oncotarget.12769

    Article  PubMed  PubMed Central  Google Scholar 

  19. Quirós PM, Español Y, Acín-Pérez R et al (2014) ATP-dependent Lon protease controls tumor bioenergetics by reprogramming mitochondrial activity. Cell Rep 8(2):542–556. https://doi.org/10.1016/j.celrep.2014.06.018

    Article  PubMed  Google Scholar 

  20. Westcott PM, Halliwill KD, To MD et al (2015) The mutational landscapes of genetic and chemical models of Kras-driven lung cancer. Nature 517(7535):489–492. https://doi.org/10.1038/nature13898

    Article  CAS  PubMed  Google Scholar 

  21. Naidoo J, Drilon A (2016) KRAS-mutant lung cancers in the era of targeted therapy. Adv Exp Med Biol 893:155–178. https://doi.org/10.1007/978-3-319-24223-1_8

    Article  PubMed  Google Scholar 

  22. Lee JS, Chu IS, Mikaelyan A et al (2004) Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nat Genet 36(12):1306–1311. https://doi.org/10.1038/ng1481

    Article  CAS  PubMed  Google Scholar 

  23. Tang XH, Knudsen B, Bemis D et al (2004) Oral cavity and esophageal carcinogenesis modeled in carcinogen-treated mice. Clin Cancer Res 10(1 Pt 1):301–313

    Article  CAS  PubMed  Google Scholar 

  24. Foy JP, Tortereau A, Caulin C et al (2016) The dynamics of gene expression changes in a mouse model of oral tumorigenesis may help refine prevention and treatment strategies in patients with oral cancer. Oncotarget 7(24):35932–35945. 10.18632/oncotarget.8321

    Article  PubMed  PubMed Central  Google Scholar 

  25. Greten FR, Eckmann L, Greten TF et al (2004) IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118(3):285–296. https://doi.org/10.1016/j.cell.2004.07.013

    Article  CAS  PubMed  Google Scholar 

  26. Suzuki R, Kohno H, Sugie S et al (2004) Sequential observations on the occurrence of preneoplastic and neoplastic lesions in mouse colon treated with azoxymethane and dextran sodium sulfate. Cancer Sci 95(9):721–727

    Article  CAS  PubMed  Google Scholar 

  27. Tanaka T, Kohno H, Suzuki R et al (2003) A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Sci 94(11):965–973

    Article  CAS  PubMed  Google Scholar 

  28. Nassar D, Latil M, Boeckx B et al (2015) Genomic landscape of carcinogen-induced and genetically induced mouse skin squamous cell carcinoma. Nat Med 21(8):946–954. https://doi.org/10.1038/nm.3878

    Article  CAS  PubMed  Google Scholar 

  29. Miller YE, Dwyer-Nield LD, Keith RL et al (2003) Induction of a high incidence of lung tumors in C57BL/6 mice with multiple ethyl carbamate injections. Cancer Lett 198(2):139–144

    Article  CAS  PubMed  Google Scholar 

  30. Lee GH, Nomura K, Kanda H et al (1991) Strain specific sensitivity to diethylnitrosamine-induced carcinogenesis is maintained in hepatocytes of C3H/HeN in equilibrium with C57BL/6N chimeric mice. Cancer Res 51(12):3257–3260

    CAS  PubMed  Google Scholar 

  31. Maronpot RR (2009) Biological basis of differential susceptibility to hepatocarcinogenesis among mouse strains. J Toxicol Pathol 22(1):11–33. https://doi.org/10.1293/tox.22.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Poole TM, Drinkwater NR (1996) Strain dependent effects of sex hormones on hepatocarcinogenesis in mice. Carcinogenesis 17(2):191–196

    Article  CAS  PubMed  Google Scholar 

  33. Suzuki R, Kohno H, Sugie S et al (2006) Strain differences in the susceptibility to azoxymethane and dextran sodium sulfate-induced colon carcinogenesis in mice. Carcinogenesis 27(1):162–169. https://doi.org/10.1093/carcin/bgi205

    Article  CAS  PubMed  Google Scholar 

  34. Neufert C, Becker C, Neurath MF (2007) An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression. Nat Protoc 2(8):1998–2004. https://doi.org/10.1038/nprot.2007.279

    Article  CAS  PubMed  Google Scholar 

  35. Miller SJ, Wei ZG, Wilson C et al (1993) Mouse skin is particularly susceptible to tumor initiation during early anagen of the hair cycle: possible involvement of hair follicle stem cells. J Invest Dermatol 101(4):591–594

    Article  CAS  PubMed  Google Scholar 

  36. Abel EL, Angel JM, Kiguchi K et al (2009) Multi-stage chemical carcinogenesis in mouse skin: fundamentals and applications. Nat Protoc 4(9):1350–1362. https://doi.org/10.1038/nprot.2009.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sundberg JP, Sundberg BA, Beamer WG (1997) Comparison of chemical carcinogen skin tumor induction efficacy in inbred, mutant, and hybrid strains of mice: morphologic variations of induced tumors and absence of a papillomavirus cocarcinogen. Mol Carcinog 20(1):19–32

    Article  CAS  PubMed  Google Scholar 

  38. Schober M, Fuchs E (2011) Tumor-initiating stem cells of squamous cell carcinomas and their control by TGF-beta and integrin/focal adhesion kinase (FAK) signaling. Proc Natl Acad Sci U S A 108(26):10544–10549. https://doi.org/10.1073/pnas.1107807108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hennings H, Glick AB, Lowry DT et al (1993) FVB/N mice: an inbred strain sensitive to the chemical induction of squamous cell carcinomas in the skin. Carcinogenesis 14(11):2353–2358

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. C. López-Otín for helpful comments and advice. Our work is supported by grants from Ministerio de Economía y Competitividad, Instituto de Salud Carlos III, CIBERONC, Plan Feder, and Progeria Research Foundation. S.F.-R. is recipient of an FPU Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alicia R. Folgueras or Gloria Velasco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Folgueras, A.R., Freitas-Rodríguez, S., Español, Y., Velasco, G. (2018). Cancer Susceptibility Models in Protease-Deficient Mice. In: Cal, S., Obaya, A. (eds) Proteases and Cancer. Methods in Molecular Biology, vol 1731. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7595-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7595-2_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7594-5

  • Online ISBN: 978-1-4939-7595-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics