Mass Spectrometry Imaging of Metabolites

  • Benjamin Balluff
  • Liam A. McDonnellEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1730)


Mass spectrometry imaging (MSI) is a technique which is gaining increasing interest in biomedical research due to its capacity to visualize molecules in tissues. First applied to the field of clinical proteomics, its potential for metabolite imaging in biomedical studies is now being recognized. Here we describe how to set up experiments for mass spectrometry imaging of metabolites in clinical tissues and how to tackle most of the obstacles in the subsequent analysis of the data.

Key words

Mass spectrometry imaging Tissue metabolomics Biomarker discovery Data analysis 



This work has been made possible with the support of the Dutch Province of Limburg. BB thanks the European Union (ERA-NET: TRANSCAN 2), ITEA, and RVO (ITEA 151003/ITEA 14001) for their financial support.


  1. 1.
    Gika HG, Wilson ID, Theodoridis GA (2014) The role of mass spectrometry in nontargeted metabolomics. In: Simó C, Cifuentes A, García-Cañas V (eds) Fundamentals of advanced Omics technologies: from genes to metabolites. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Addie RD, Balluff B, Bovee JV et al (2015) Current state and future challenges of mass spectrometry imaging for clinical research. Anal Chem 87(13):6426–6433. Scholar
  3. 3.
    Nilsson A, Goodwin RJ, Shariatgorji M et al (2015) Mass spectrometry imaging in drug development. Anal Chem 87(3):1437–1455. Scholar
  4. 4.
    Lou S, Balluff B, Cleven AH et al (2017) Prognostic metabolite biomarkers for soft tissue sarcomas discovered by mass spectrometry imaging. J Am Soc Mass Spectrom 28(2):376–383. Scholar
  5. 5.
    Zhou D, Guo S, Zhang M et al (2017) Mass spectrometry imaging of small molecules in biological tissues using graphene oxide as a matrix. Anal Chim Acta 962:52–59. Scholar
  6. 6.
    Wu Q, Chu JL, Rubakhin SS et al (2017) Dopamine-modified TiO2 monolith-assisted LDI MS imaging for simultaneous localization of small metabolites and lipids in mouse brain tissue with enhanced detection selectivity and sensitivity. Chem Sci 8(5):3926–3938. Scholar
  7. 7.
    Mulder IA, Esteve C, Wermer MJ et al (2016) Funnel-freezing versus heat-stabilization for the visualization of metabolites by mass spectrometry imaging in a mouse stroke model. Proteomics 16(11–12):1652–1659. Scholar
  8. 8.
    Shariatgorji M, Nilsson A, Goodwin RJ et al (2014) Direct targeted quantitative molecular imaging of neurotransmitters in brain tissue sections. Neuron 84(4):697–707. Scholar
  9. 9.
    Ly A, Buck A, Balluff B et al (2016) High-mass-resolution MALDI mass spectrometry imaging of metabolites from formalin-fixed paraffin-embedded tissue. Nat Protoc 11(8):1428–1443. Scholar
  10. 10.
    Buck A, Balluff B, Voss A et al (2016) How suitable is matrix-assisted laser desorption/ionization-time-of-flight for metabolite imaging from clinical formalin-fixed and paraffin-embedded tissue samples in comparison to matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry? Anal Chem 88(10):5281–5289. Scholar
  11. 11.
    Lou S, Balluff B, Cleven AH et al (2016) An experimental guideline for the analysis of histologically heterogeneous tumors by MALDI-TOF mass spectrometry imaging. Biochim Biophys Acta 1865:957–966. Scholar
  12. 12.
    Shariatgorji M, Nilsson A, Bonta M et al (2016) Direct imaging of elemental distributions in tissue sections by laser ablation mass spectrometry. Methods 104:86–92. Scholar
  13. 13.
    Aichler M, Elsner M, Ludyga N et al (2013) Clinical response to chemotherapy in oesophageal adenocarcinoma patients is linked to defects in mitochondria. J Pathol 230(4):410–419. Scholar
  14. 14.
    Rauser S, Deininger SO, Suckau D et al (2010) Approaching MALDI molecular imaging for clinical proteomic research: current state and fields of application. Expert Rev Proteomics 7(6):927–941. Scholar
  15. 15.
    Schwamborn K (2017) The importance of histology and pathology in mass spectrometry imaging. Adv Cancer Res 134:1–26. Scholar
  16. 16.
    McDonnell LA, van Remoortere A, van Zeijl RJ et al (2008) Mass spectrometry image correlation: quantifying colocalization. J Proteome Res 7(8):3619–3627. Scholar
  17. 17.
    Deininger SO, Cornett DS, Paape R et al (2011) Normalization in MALDI-TOF imaging datasets of proteins: practical considerations. Anal Bioanal Chem 401(1):167–181. Scholar
  18. 18.
    Jones EA, Deininger SO, Hogendoorn PC et al (2012) Imaging mass spectrometry statistical analysis. J Proteome 75(16):4962–4989. Scholar
  19. 19.
    Dekker TJ, Jones EA, Corver WE et al (2015) Towards imaging metabolic pathways in tissues. Anal Bioanal Chem 407(8):2167–2176. Scholar
  20. 20.
    Buck A, Ly A, Balluff B et al (2015) High-resolution MALDI-FT-ICR MS imaging for the analysis of metabolites from formalin-fixed, paraffin-embedded clinical tissue samples. J Pathol 237(1):123–132. Scholar
  21. 21.
    Blatherwick EQ, Svensson CI, Frenguelli BG et al (2013) Localisation of adenine nucleotides in heat-stabilised mouse brains using ion mobility enabled MALDI imaging. Int J Mass Spectrom 345:19–27. Scholar
  22. 22.
    Hattori K, Kajimura M, Hishiki T et al (2010) Paradoxical ATP elevation in ischemic penumbra revealed by quantitative imaging mass spectrometry. Antioxid Redox Signal 13(8):1157–1167. Scholar
  23. 23.
    Sugiura Y, Honda K, Kajimura M et al (2014) Visualization and quantification of cerebral metabolic fluxes of glucose in awake mice. Proteomics 14(7–8):829–838. Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Maastricht MultiModal Molecular Imaging Institute (M4I)Maastricht UniversityMaastrichtThe Netherlands
  2. 2.Fondazione Pisana per la Scienza ONLUSPisaItaly

Personalised recommendations