Skip to main content

Quantitative Analysis of Central Energy Metabolism in Cell Culture Samples

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1730))

Abstract

Nuclear magnetic resonance (NMR) is one of the key analytical platforms used in the analysis of intracellular and extracellular metabolites. Despite the technological advances that allow for the production of high-quality data, the sampling procedures of cultured cells are less well standardized. Different cell lines and culture media composition require adjustments of the protocols to result meaningful quantitative information. Here we provide the workflow for obtaining quantitative metabolic data from adherent mammalian cells using NMR spectroscopy. The robustness of NMR allows for the implementation of the here described protocol to other cell types with only minor adjustments.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Liu W, Deng Y, Liu Y et al (2013) Stem cell models for drug discovery and toxicology studies. J Biochem Mol Toxicol 27:17–27

    Article  CAS  PubMed  Google Scholar 

  2. Benjamin DI, Cravatt BF, Nomura DK (2012) Global profiling strategies for mapping Dysregulated metabolic pathways in cancer. Cell Metab 16:565–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schlegel M, Köhler D, Körner A et al (2016) The neuroimmune guidance cue netrin-1 controls resolution programs and promotes liver regeneration. Hepatology 63:1689–1705

    Article  CAS  PubMed  Google Scholar 

  4. McNamara LE, Sjostrom T, Meek RMD et al (2012) Metabolomics: a valuable tool for stem cell monitoring in regenerative medicine. J R Soc Interface 9:1713–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kelly B, O’Neill LA (2015) Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res 25:771–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Johnson CH, Ivanisevic J, Siuzdak G (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 17:451–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bennett BD, Yuan J, Kimball EH et al (2008) Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach. Nat Protoc 3:1299–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Paglia G, Hrafnsdóttir S, Magnúsdóttir M et al (2012) Monitoring metabolites consumption and secretion in cultured cells using ultra-performance liquid chromatography quadrupole–time of flight mass spectrometry (UPLC–Q–ToF-MS). Anal Bioanal Chem 402:1183–1198

    Article  CAS  PubMed  Google Scholar 

  9. Nagana Gowda GA, Abell L, Lee CF et al (2016) Simultaneous analysis of major coenzymes of cellular redox reactions and energy using ex vivo 1 H NMR spectroscopy. Anal Chem 88:4817–4824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goldoni L, Beringhelli T, Rocchia W et al (2016) A simple and accurate protocol for absolute polar metabolite quantification in cell cultures using quantitative nuclear magnetic resonance. Anal Biochem 501:26–34

    Article  CAS  PubMed  Google Scholar 

  11. León Z, García-Cañaveras JC, Donato MT et al (2013) Mammalian cell metabolomics: experimental design and sample preparation. Electrophoresis 34:2762–2775

    PubMed  Google Scholar 

  12. Dietmair S, Timmins NE, Gray PP et al (2010) Towards quantitative metabolomics of mammalian cells: development of a metabolite extraction protocol. Anal Biochem 404:155–164

    Article  CAS  PubMed  Google Scholar 

  13. Sellick CA, Hansen R, Stephens GM et al (2011) Metabolite extraction from suspension-cultured mammalian cells for global metabolite profiling. Nat Protoc 6:1241–1249

    Article  CAS  PubMed  Google Scholar 

  14. Lorenz MA, Burant CF, Kennedy RT (2011) Reducing time and increasing sensitivity in sample preparation for adherent mammalian cell metabolomics. Anal Chem 83:3406–3414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dettmer K, Nürnberger N, Kaspar H et al (2011) Metabolite extraction from adherently growing mammalian cells for metabolomics studies: optimization of harvesting and extraction protocols. Anal Bioanal Chem 399:1127–1139

    Article  CAS  PubMed  Google Scholar 

  16. Bi H, Krausz KW, Manna SK et al (2013) Optimization of harvesting, extraction, and analytical protocols for UPLC-ESI-MS-based metabolomic analysis of adherent mammalian cancer cells. Anal Bioanal Chem 405:5279–5289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ser Z, Liu X, Tang NN et al (2015) Extraction parameters for metabolomics from cultured cells. Anal Biochem 475:22–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Smith PK, Krohn RI, Hermanson GT et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  PubMed  Google Scholar 

  19. Findeisen M, Brand T, Berger S (2007) A 1H-NMR thermometer suitable for cryoprobes. Magn Reson Chem 45:175–178

    Article  CAS  PubMed  Google Scholar 

  20. Wu PSC, Otting G (2005) Rapid pulse length determination in high-resolution NMR. J Magn Reson 176:115–119

    Article  CAS  PubMed  Google Scholar 

  21. Wishart DS, Jewison T, Guo AC et al (2013) HMDB 3.0–the human Metabolome database in 2013. Nucleic Acids Res 41:D801–D807

    Article  CAS  Google Scholar 

  22. Ulrich EL, Akutsu H, Doreleijers JF et al (2008) BioMagResBank. Nucleic Acids Res 36:D402–D408

    Article  CAS  PubMed  Google Scholar 

  23. Ludwig C, Easton JM, Lodi A et al (2012) Birmingham metabolite library: a publicly accessible database of 1-D 1H and 2-D 1H J-resolved NMR spectra of authentic metabolite standards (BML-NMR). Metabolomics 8:8–18

    Article  CAS  Google Scholar 

  24. Hao J, Liebeke M, Astle W et al (2014) Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN. Nat Protoc 9:1416–1427

    Article  CAS  PubMed  Google Scholar 

  25. Bharti SK, Roy R (2012) Quantitative 1H NMR spectroscopy. TrAC Trends Anal Chem 35:5–26

    Article  CAS  Google Scholar 

  26. Sokolenko S, Blondeel EJMM, Azlah N et al (2014) Profiling convoluted single-dimension proton NMR spectra: a Plackett–Burman approach for assessing quantification error of metabolites in complex mixtures with application to cell culture. Anal Chem 86:3330–3337

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarantos Kostidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kostidis, S. (2018). Quantitative Analysis of Central Energy Metabolism in Cell Culture Samples. In: Giera, M. (eds) Clinical Metabolomics. Methods in Molecular Biology, vol 1730. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7592-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7592-1_25

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7591-4

  • Online ISBN: 978-1-4939-7592-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics