Advertisement

NMR Analysis of Fecal Samples

  • Hye Kyong Kim
  • Sarantos Kostidis
  • Young Hae ChoiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1730)

Abstract

Fecal analysis can generate data that is relevant for the exploration of gut microbiota and their relationship with the host. Nuclear magnetic resonance (NMR) spectroscopy is an excellent tool for the profiling of fecal extracts as it enables the simultaneous detection of various metabolites from a broad range of chemical classes including, among others, short-chain fatty acids, organic acids, amino acids, bile acids, carbohydrates, amines, and alcohols. Compounds present at low μM concentrations can be detected and quantified with a single measurement. Moreover, NMR-based profiling requires a relatively simple sample preparation. Here we describe the three main steps of the general workflow for the NMR-based profiling of feces: sample preparation, NMR data acquisition, and data analysis.

Key words

NMR spectroscopy Feces Sample preparation Data analysis Identification Gut microbiota 

Notes

Acknowledgments

The authors thank Dr. E.G. Wilson for her comments and review of the manuscript.

References

  1. 1.
    Beckonert O, Keun HC, Ebbels TMD, Bundy J, Holmes E, Lindon JC, Nicholson JK (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2:2692–2703CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S (2012) Host-gut microbiota metabolic interactions. Science 336:1262–1267CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Bjerrum JT, Wang Y, Hao F, Coskun M, Ludwig C, Günther U, Nielsen OH (2015) Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn’s disease and healthy individuals. Metabolomics 11:122–133CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Le Gall G, Noor SO, Ridgway K, Scovell L, Janieson C, Johnson IT, Colquhoun IJ, Kemsley EK, Narbad A (2011) Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome. J Proteome Res 10:4208–4218CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Marchesi JR, Holmes E, Khan F, Kochhar S, Scanlan P, Shanahan F, Wilson ID, Wang Y (2007) Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res 6:546–551CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Kostidis S, Kokova D, Dementeva N, Saltykova KHK, Choi YH, Mayboroda OA (2017) 1H-NMR analysis of feces: new possibilities in the helminthes infections research. BMC Infect Dis 17:275CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Saccenti E, Hoefsloot HCJ, Smilde AK, Westerhuis JA, Hendriks MMWB (2014) Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics 10:361–374CrossRefGoogle Scholar
  8. 8.
    McKenzie JS, Donarski JA, Wilson JC, Charlton AJ (2011) Analysis of complex mixtures using high-resolution nuclear magnetic resonance spectroscopy and chemometrics. Prog Nucl Magn Reson Spectrosc 59:336–359CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Gratton J, Phetcharaburanin J, Mullish BH, Williams HRT, Mark Thursz M, Nicholson JK, Holmes E, Marchesi JR, Li JV (2016) Optimized sample handling strategy for metabolic profiling of human feces. Anal Chem 88:4661–4668CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Lamichhane S, Yde CC, Schmedes MS, Jensen HM, Meier S, Bertram HC (2015) Strategy for nuclear magnetic resonance-based metabolomics of human feces. Anal Chem 87:5930−5937CrossRefGoogle Scholar
  11. 11.
    Deda O, Gika HG, Wilson ID, Theodoridis GA (2015) An overview of fecal sample preparation for global metabolic profiling. J Pharm Biomed Anal 113:137–150CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Wu J, An Y, Yao J, Wang Y, Tang H (2010) An optimized sample preparation method for NMR-based faecal metabonomic analysis. Analyst 135:1023–1030CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Wu P, Gottfried O (2005) Rapid pulse length determination in high-resolution NMR. J Magn Reson 176:115–119CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Izquierdo-García JL, Villa P, Kyriazis A, del Puerto-Nevado L, Pérez-Rial S, Rodriguez I, Hernandez N, Ruiz-Cabello J (2011) Descriptive review of current NMR-based metabolomic data analysis packages. Prog Nucl Magn Reson Spectrosc 59:263–270CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Astle W, De Iorio M, Richardson S, Stephens D, Ebbels T (2012) A Bayesian model of NMR spectra for the deconvolution and quantification of metabolites in complex biological mixtures. J Am Stat Assoc 107:1259–1271CrossRefGoogle Scholar
  16. 16.
    Hao J, Liebeke M, Astle W, Maria De Iorio M, Bundy JG, Ebbels T (2014) Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN. Nat Protoc 9:1416–1427CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Zheng C, Zhang S, Ragg S, Raftery D, Vitek O (2011) Identification and quantification of metabolites in 1H NMR spectra by Bayesian model selection. Bioinformatics 27:1637–1644CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Findeisen M, Brand T, Berger S (2007) A 1H-NMR thermometer suitable for cryoprobes. Magn Reson Chem 45:175–178CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    De Meyer T, Sinnaeve D, Van Gasse B, Tsiporkova E, Rietzschel ER, De Buyzere ML, Gillebert TC, Bekaert S, Martins JC, Van Criekinge W (2008) NMR-based characterization of metabolic alterations in hypertension using an adaptive intelligent binning algorithm. Anal Chem 80:3783–3790CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Forshed J, Torgrip RJO, Åberg KM, Karlberg B, Lindberg J, Jacobsson SP (2005) A comparison of methods for alignment of NMR peaks in the context of cluster analysis. J Pharma Biomed Anal 38:824–832CrossRefGoogle Scholar
  21. 21.
    Liland KH (2011) Multivariate methods in metabolomics - from pre-processing to dimension reduction and statistical analysis. Trends Analyt Chem 30:827–841CrossRefGoogle Scholar
  22. 22.
    Cevallos-Cevallos JM, Reyes-De-Corcuera JI, Etxeberria E, Danyluk MD, Rodrick GE (2009) Metabolomic analysis in food science: a review. Trends Food Sci Technol 20:557–566CrossRefGoogle Scholar
  23. 23.
    Smolinska A, Blanchet L, Buydens LMC, Wijmenga SS (2012) NMR and pattern recognition methods in metabolomics: from data acquisition to biomarker discovery: a review. Anal Chim Acta 750:82–97CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Lutz NW, Sweedler JV, Wevers RA (2013) Ch. 1. Exploring the human metabolome by NMR spectroscopy and mass spectrometry, Wishart DS. In: Methodologies for metabolomics: experimental strategies and techniques. Cambridge University Press, London, pp 3–29Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Hye Kyong Kim
    • 1
  • Sarantos Kostidis
    • 2
  • Young Hae Choi
    • 1
    Email author
  1. 1.Natural Product Laboratory, Institute of BiologyLeiden UniversityLeidenThe Netherlands
  2. 2.Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenThe Netherlands

Personalised recommendations