Advertisement

Metabolomics as a Tool to Understand Pathophysiological Processes

  • Julijana IvanisevicEmail author
  • Aurelien ThomasEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1730)

Abstract

Multiple diseases have a strong metabolic component, and metabolomics as a powerful phenotyping technology, in combination with orthogonal biological and clinical approaches, will undoubtedly play a determinant role in accelerating the understanding of mechanisms that underlie these complex diseases determined by a set of genetic, lifestyle, and environmental exposure factors. Here, we provide several examples of valuable findings from metabolomics-led studies in diabetes and obesity metabolism, neurodegenerative disorders, and cancer metabolism and offer a longer term vision toward personalized approach to medicine, from population-based studies to pharmacometabolomics.

Key words

Metabolomics Obesity metabolism Diabetes metabolism Neurodegenerative diseases Cancer metabolism Personalized medicine Pharmacometabolomics Population studies 

References

  1. 1.
    Wishart DS (2016) Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov 15(7):473–484. https://doi.org/10.1038/nrd.2016.32CrossRefPubMedGoogle Scholar
  2. 2.
    Johnson CH, Ivanisevic J, Siuzdak G (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 17(7):451–459. https://doi.org/10.1038/nrm.2016.25CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ivanisevic J, Siuzdak G (2015) The role of metabolomics in brain metabolism research. J Neuroimmune Pharmacol 10:391–395CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Schmidt CW (2004) Metabolomics: what’s happening downstream of DNA. Environ Health Perspect 112(7):A410–A415CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zamboni N, Saghatelian A, Patti GJ (2015) Defining the metabolome: size, flux, and regulation. Mol Cell 58(4):699–706. https://doi.org/10.1016/j.molcel.2015.04.021CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Patti GJ, Yanes O, Siuzdak G (2012) Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13(4):263–269. https://doi.org/10.1038/nrm3314CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sperber H, Mathieu J, Wang Y, Ferreccio A, Hesson J, Xu Z, Fischer KA, Devi A, Detraux D, Gu H, Battle SL, Showalter M, Valensisi C, Bielas JH, Ericson NG, Margaretha L, Robitaille AM, Margineantu D, Fiehn O, Hockenbery D, Blau CA, Raftery D, Margolin AA, Hawkins RD, Moon RT, Ware CB, Ruohola-Baker H (2015) The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat Cell Biol 17(12):1523–1535. https://doi.org/10.1038/ncb3264CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sabari BR, Zhang D, Allis CD, Zhao Y (2017) Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol 18(2):90–101. https://doi.org/10.1038/nrm.2016.140CrossRefPubMedGoogle Scholar
  9. 9.
    Siroux V, Agier L, Slama R (2016) The exposome concept: a challenge and a potential driver for environmental health research. Eur Respir Rev 25(140):124–129. https://doi.org/10.1183/16000617.0034-2016CrossRefPubMedGoogle Scholar
  10. 10.
    Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BAH, Forslund K, Hildebrand F, Prifti E, Falony G, Le Chatelier E, Levenez F, Doré J, Mattila I, Plichta DR, Pöhö P, Hellgren LI, Arumugam M, Sunagawa S, Vieira-Silva S, Jørgensen T, Holm JB, Trošt K, MetaHIT Consortium, Kristiansen K, Brix S, Raes J, Wang J, Hansen T, Bork P, Brunak S, Oresic M, Ehrlich SD, Pedersen O (2016) Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535(7612):376–381CrossRefPubMedGoogle Scholar
  11. 11.
    Bucci M (2016) Gut microbiome: branching into metabolic disease. Nat Chem Biol 12(9):657–657. https://doi.org/10.1038/nchembio.2164CrossRefGoogle Scholar
  12. 12.
    Mayer EA, Knight R, Mazmanian SK, Cryan JF, Tillisch K (2014) Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci 34(46):15490–15496. https://doi.org/10.1523/jneurosci.3299-14.2014CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mamas M, Dunn WB, Neyses L, Goodacre R (2011) The role of metabolites and metabolomics in clinically applicable biomarkers of disease. Arch Toxicol 85(1):5–17. https://doi.org/10.1007/s00204-010-0609-6CrossRefPubMedGoogle Scholar
  14. 14.
    Weber RJM, Lawson TN, Salek RM, Ebbels TMD, Glen RC, Goodacre R, Griffin JL, Haug K, Koulman A, Moreno P, Ralser M, Steinbeck C, Dunn WB, Viant MR (2017) Computational tools and workflows in metabolomics: an international survey highlights the opportunity for harmonisation through galaxy. Metabolomics 13(2):12. https://doi.org/10.1007/s11306-016-1147-xCrossRefPubMedGoogle Scholar
  15. 15.
    Benton HP, Ivanisevic J, Mahieu NG, Kurczy ME, Johnson CH, Franco L, Rinehart D, Valentine E, Gowda H, Ubhi BK, Tautenhahn R, Gieschen A, Fields MW, Patti GJ, Siuzdak G (2015) Autonomous metabolomics for rapid metabolite identification in global profiling. Anal Chem 87(2):884–891. https://doi.org/10.1021/ac5025649CrossRefPubMedGoogle Scholar
  16. 16.
    Tautenhahn R, Cho K, Uritboonthai W, Zhu Z, Patti GJ, Siuzdak G (2012) An accelerated workflow for untargeted metabolomics using the METLIN database. Nat Biotechnol 30(9):826–828. https://doi.org/10.1038/nbt.2348CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Johnson CH, Ivanisevic J, Benton HP, Siuzdak G (2015) Bioinformatics: the next frontier of metabolomics. Anal Chem 87(1):147–156. https://doi.org/10.1021/ac5040693CrossRefPubMedGoogle Scholar
  18. 18.
    Ivanisevic J, Elias D, Deguchi H, Averell PM, Kurczy M, Johnson CH, Tautenhahn R, Zhu Z, Watrous J, Jain M (2015) Arteriovenous blood metabolomics: a readout of intra-tissue metabostasis. Sci Rep 5:12757CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Beger RD, Dunn W, Schmidt MA, Gross SS, Kirwan JA, Cascante M, Brennan L, Wishart DS, Oresic M, Hankemeier T, Broadhurst DI, Lane AN, Suhre K, Kastenmüller G, Sumner SJ, Thiele I, Fiehn O, Kaddurah-Daouk R, for “Precision M, Pharmacometabolomics Task Group”-Metabolomics Society I (2016) Metabolomics enables precision medicine: “a white paper, community perspective”. Metabolomics 12(9):149. https://doi.org/10.1007/s11306-016-1094-6CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Su LJ, Fiehn O, Maruvada P, Moore SC, O’Keefe SJ, Wishart DS, Zanetti KA (2014) The use of metabolomics in population-based research. Adv Nutr 5(6):785–788. https://doi.org/10.3945/an.114.006494CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, Bouatra S, Sinelnikov I, Krishnamurthy R, Eisner R, Gautam B, Young N, Xia J, Knox C, Dong E, Huang P, Hollander Z, Pedersen TL, Smith SR, Bamforth F, Greiner R, McManus B, Newman JW, Goodfriend T, Wishart DS (2011) The human serum metabolome. PLoS One 6(2):e16957. https://doi.org/10.1371/journal.pone.0016957CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yanes O, Tautenhahn R, Patti GJ, Siuzdak G (2011) Expanding coverage of the metabolome for global metabolite profiling. Anal Chem 83(6):2152–2161. https://doi.org/10.1021/ac102981kCrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zhang A, Sun H, Yan G, Wang P, Han Y, Wang X (2014) Metabolomics in diagnosis and biomarker discovery of colorectal cancer. Cancer Lett 345(1):17–20. https://doi.org/10.1016/j.canlet.2013.11.011CrossRefPubMedGoogle Scholar
  24. 24.
    Thomas A, Lenglet S, Chaurand P, Deglon J, Mangin P, Mach F, Steffens S, Wolfender JL, Staub C (2011) Mass spectrometry for the evaluation of cardiovascular diseases based on proteomics and lipidomics. Thromb Haemost 106(1):20–33. https://doi.org/10.1160/TH10-12-0812CrossRefPubMedGoogle Scholar
  25. 25.
    Dunn WB, Bailey NJ, Johnson HE (2005) Measuring the metabolome: current analytical technologies. Analyst 130(5):606–625. https://doi.org/10.1039/b418288jCrossRefPubMedGoogle Scholar
  26. 26.
    Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, Brown M, Knowles JD, Halsall A, Haselden JN, Nicholls AW, Wilson ID, Kell DB, Goodacre R, Human Serum Metabolome Consortium (2011) Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc 6(7):1060–1083. https://doi.org/10.1038/nprot.2011.335CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Schweiger R, Baier MC, Persicke M, Muller C (2014) High specificity in plant leaf metabolic responses to arbuscular mycorrhiza. Nat Commun 5:3886. https://doi.org/10.1038/ncomms4886CrossRefPubMedGoogle Scholar
  28. 28.
    Tugizimana F, Steenkamp PA, Piater LA, Dubery IA (2014) Multi-platform metabolomic analyses of ergosterol-induced dynamic changes in Nicotiana tabacum cells. PLoS One 9(1):e87846. https://doi.org/10.1371/journal.pone.0087846CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C, Bjorndahl TC, Krishnamurthy R, Saleem F, Liu P, Dame ZT, Poelzer J, Huynh J, Yallou FS, Psychogios N, Dong E, Bogumil R, Roehring C, Wishart DS (2013) The human urine metabolome. PLoS One 8(9):e73076. https://doi.org/10.1371/journal.pone.0073076CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Want EJ, Masson P, Michopoulos F, Wilson ID, Theodoridis G, Plumb RS, Shockcor J, Loftus N, Holmes E, Nicholson JK (2013) Global metabolic profiling of animal and human tissues via UPLC-MS. Nat Protoc 8(1):17–32. https://doi.org/10.1038/nprot.2012.135CrossRefPubMedGoogle Scholar
  31. 31.
    Junot C, Fenaille F, Colsch B, Becher F (2013) High resolution mass spectrometry based techniques at the crossroads of metabolic pathways. Mass Spectrom Rev 33(6):471–500. https://doi.org/10.1002/mas.21401CrossRefPubMedGoogle Scholar
  32. 32.
    Fiehn O (2002) Metabolomics – the link between genotypes and phenotypes. Plant Mol Biol 48(1–2):155–171CrossRefPubMedGoogle Scholar
  33. 33.
    Wolfender JL, Marti G, Thomas A, Bertrand S (2014) Current approaches and challenges for the metabolite profiling of complex natural extracts. J Chromatogr A 1382:136–164. https://doi.org/10.1016/j.chroma.2014.10.091CrossRefPubMedGoogle Scholar
  34. 34.
    Thomas A, Deglon J, Steimer T, Mangin P, Daali Y, Staub C (2010) On-line desorption of dried blood spots coupled to hydrophilic interaction/reversed-phase LC/MS/MS system for the simultaneous analysis of drugs and their polar metabolites. J Sep Sci 33(6–7):873–879. https://doi.org/10.1002/jssc.200900593CrossRefPubMedGoogle Scholar
  35. 35.
    McCalley DV (2007) Is hydrophilic interaction chromatography with silica columns a viable alternative to reversed-phase liquid chromatography for the analysis of ionisable compounds? J Chromatogr A 1171(1–2):46–55. https://doi.org/10.1016/j.chroma.2007.09.047CrossRefPubMedGoogle Scholar
  36. 36.
    Ivanisevic J, Zhu ZJ, Plate L, Tautenhahn R, Chen S, O’Brien PJ, Johnson CH, Marletta MA, Patti GJ, Siuzdak G (2013) Toward ‘omic scale metabolite profiling: a dual separation-mass spectrometry approach for coverage of lipid and central carbon metabolism. Anal Chem 85(14):6876–6884. https://doi.org/10.1021/ac401140hCrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G (2012) XCMS Online: a web-based platform to process untargeted metabolomic data. Anal Chem 84(11):5035–5039. https://doi.org/10.1021/ac300698cCrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Xia J, Wishart DS (2011) Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc 6(6):743–760. https://doi.org/10.1038/nprot.2011.319CrossRefPubMedGoogle Scholar
  39. 39.
    Eugster PJ, Glauser G, Wolfender JL (2013) Strategies in biomarker discovery. Peak annotation by MS and targeted LC-MS micro-fractionation for de novo structure identification by micro-NMR. Methods Mol Biol 1055:267–289. https://doi.org/10.1007/978-1-62703-577-4_19CrossRefPubMedGoogle Scholar
  40. 40.
    Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y, Mandal R, Aziat F, Dong E, Bouatra S, Sinelnikov I, Arndt D, Xia J, Liu P, Yallou F, Bjorndahl T, Perez-Pineiro R, Eisner R, Allen F, Neveu V, Greiner R, Scalbert A (2013) HMDB 3.0—The Human Metabolome Database in 2013. Nucleic Acids Res 41(Database issue):D801–D807. https://doi.org/10.1093/nar/gks1065CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Yuan M, Breitkopf SB, Yang X, Asara JM (2012) A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat Protoc 7(5):872–881. https://doi.org/10.1038/nprot.2012.024CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Cai Y, Weng K, Guo Y, Peng J, Zhu Z-J (2015) An integrated targeted metabolomic platform for high-throughput metabolite profiling and automated data processing. Metabolomics 11(6):1575–1586. https://doi.org/10.1007/s11306-015-0809-4CrossRefGoogle Scholar
  43. 43.
    Norris JL, Caprioli RM (2013) Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev 113(4):2309–2342. https://doi.org/10.1021/cr3004295CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Sun N, Ly A, Meding S, Witting M, Hauck SM, Ueffing M, Schmitt-Kopplin P, Aichler M, Walch A (2014) High-resolution metabolite imaging of light and dark treated retina using MALDI-FTICR mass spectrometry. Proteomics 14(7-8):913–923. https://doi.org/10.1002/pmic.201300407CrossRefPubMedGoogle Scholar
  45. 45.
    Thomas A, Charbonneau JL, Fournaise E, Chaurand P (2012) Sublimation of new matrix candidates for high spatial resolution imaging mass spectrometry of lipids: Enhanced information in both positive and negative polarities after 1,5-diaminonapthalene deposition. Anal Chem 84(4):2048–2054. https://doi.org/10.1021/ac2033547CrossRefPubMedGoogle Scholar
  46. 46.
    Ly A, Buck A, Balluff B, Sun N, Gorzolka K, Feuchtinger A, Janssen KP, Kuppen PJ, van de Velde CJ, Weirich G, Erlmeier F, Langer R, Aubele M, Zitzelsberger H, McDonnell L, Aichler M, Walch A (2016) High-mass-resolution MALDI mass spectrometry imaging of metabolites from formalin-fixed paraffin-embedded tissue. Nat Protoc 11(8):1428–1443. https://doi.org/10.1038/nprot.2016.081CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Patterson NH, Alabdulkarim B, Lazaris A, Thomas A, Marcinkiewicz MM, Gao ZH, Vermeulen PB, Chaurand P, Metrakos P (2016) Assessment of pathological response to therapy using lipid mass spectrometry imaging. Sci Rep 6:36814. https://doi.org/10.1038/srep36814CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Aichler M, Walch A (2015) MALDI Imaging mass spectrometry: current frontiers and perspectives in pathology research and practice. Lab Invest 95(4):422–431. https://doi.org/10.1038/labinvest.2014.156CrossRefPubMedGoogle Scholar
  49. 49.
    Hamilton LK, Dufresne M, Joppe SE, Petryszyn S, Aumont A, Calon F, Barnabe-Heider F, Furtos A, Parent M, Chaurand P, Fernandes KJ (2015) Aberrant lipid metabolism in the forebrain niche suppresses adult neural stem cell proliferation in an animal model of Alzheimer’s disease. Cell Stem Cell 17(4):397–411. https://doi.org/10.1016/j.stem.2015.08.001CrossRefPubMedGoogle Scholar
  50. 50.
    Tonnies E, Trushina E (2017) Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimer’s Dis 57(4):1105–1121. https://doi.org/10.3233/jad-161088CrossRefGoogle Scholar
  51. 51.
    Stranahan AM, Mattson MP (2012) Recruiting adaptive cellular stress responses for successful brain ageing. Nat Rev Neurosci 13(3):209–216. https://doi.org/10.1038/nrn3151CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
  53. 53.
    Jiao H, Arner P, Hoffstedt J, Brodin D, Dubern B, Czernichow S, van’t Hooft F, Axelsson T, Pedersen O, Hansen T, Sorensen TI, Hebebrand J, Kere J, Dahlman-Wright K, Hamsten A, Clement K, Dahlman I (2011) Genome wide association study identifies KCNMA1 contributing to human obesity. BMC Med Genomics 4:51. https://doi.org/10.1186/1755-8794-4-51CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, Powell C, Vedantam S, Buchkovich ML, Yang J, Croteau-Chonka DC, Esko T, Fall T, Ferreira T, Gustafsson S, Kutalik Z, Luan J, Mägi R, Randall JC, Winkler TW, Wood AR, Workalemahu T, Faul JD, Smith JA, Zhao JH, Zhao W, Chen J, Fehrmann R, Hedman ÅK, Karjalainen J, Schmidt EM, Absher D, Amin N, Anderson D, Beekman M, Bolton JL, Bragg-Gresham JL, Buyske S, Demirkan A, Deng G, Ehret GB, Feenstra B, Feitosa MF, Fischer K, Goel A, Gong J, Jackson AU, Kanoni S, Kleber ME, Kristiansson K, Lim U, Lotay V, Mangino M, Leach IM, Medina-Gomez C, Medland SE, Nalls MA, Palmer CD, Pasko D, Pechlivanis S, Peters MJ, Prokopenko I, Shungin D, Stančáková A, Strawbridge RJ, Sung YJ, Tanaka T, Teumer A, Trompet S, van der Laan SW, van Setten J, Van Vliet-Ostaptchouk JV, Wang Z, Yengo L, Zhang W, Isaacs A, Albrecht E, Ärnlöv J, Arscott GM, Attwood AP, Bandinelli S, Barrett A, Bas IN, Bellis C, Bennett AJ, Berne C, Blagieva R, Blüher M, Böhringer S, Bonnycastle LL, Böttcher Y, Boyd HA, Bruinenberg M, Caspersen IH, Chen YI, Clarke R, Daw EW, de Craen AJM, Delgado G, Dimitriou M, Doney ASF, Eklund N, Estrada K, Eury E, Folkersen L, Fraser RM, Garcia ME, Geller F, Giedraitis V, Gigante B, Go AS, Golay A, Goodall AH, Gordon SD, Gorski M, Grabe HJ, Grallert H, Grammer TB, Gräßler J, Grönberg H, Groves CJ, Gusto G, Haessler J, Hall P, Haller T, Hallmans G, Hartman CA, Hassinen M, Hayward C, Heard-Costa NL, Helmer Q, Hengstenberg C, Holmen O, Hottenga JJ, James AL, Jeff JM, Johansson Å, Jolley J, Juliusdottir T, Kinnunen L, Koenig W, Koskenvuo M, Kratzer W, Laitinen J, Lamina C, Leander K, Lee NR, Lichtner P, Lind L, Lindström J, Lo KS, Lobbens S, Lorbeer R, Lu Y, Mach F, Magnusson PKE, Mahajan A, McArdle WL, McLachlan S, Menni C, Merger S, Mihailov E, Milani L, Moayyeri A, Monda KL, Morken MA, Mulas A, Müller G, Müller-Nurasyid M, Musk AW, Nagaraja R, Nöthen MM, Nolte IM, Pilz S, Rayner NW, Renstrom F, Rettig R, Ried JS, Ripke S, Robertson NR, Rose LM, Sanna S, Scharnagl H, Scholtens S, Schumacher FR, Scott WR, Seufferlein T, Shi J, Smith AV, Smolonska J, Stanton AV, Steinthorsdottir V, Stirrups K, Stringham HM, Sundström J, Swertz MA, Swift AJ, Syvänen AC, Tan ST, Tayo BO, Thorand B, Thorleifsson G, Tyrer JP, Uh HW, Vandenput L, Verhulst FC, Vermeulen SH, Verweij N, Vonk JM, Waite LL, Warren HR, Waterworth D, Weedon MN, Wilkens LR, Willenborg C, Wilsgaard T, Wojczynski MK, Wong A, Wright AF, Zhang Q, LifeLines Cohort Study, Brennan EP, Choi M, Dastani Z, Drong AW, Eriksson P, Franco-Cereceda A, Gådin JR, Gharavi AG, Goddard ME, Handsaker RE, Huang J, Karpe F, Kathiresan S, Keildson S, Kiryluk K, Kubo M, Lee JY, Liang L, Lifton RP, Ma B, McCarroll SA, McKnight AJ, Min JL, Moffatt MF, Montgomery GW, Murabito JM, Nicholson G, Nyholt DR, Okada Y, JRB P, Dorajoo R, Reinmaa E, Salem RM, Sandholm N, Scott RA, Stolk L, Takahashi A, Tanaka T, van’t Hooft FM, AAE V, Westra HJ, Zheng W, Zondervan KT, ADIPOGen Consortium, AGEN-BMI Working Group, CARDIOGRAMplusC4D Consortium, CKDGen Consortium, GLGC, ICBP, MAGIC Investigators, MuTHER Consortium, MIGen Consortium, PAGE Consortium, ReproGen Consortium, GENIE Consortium, International Endogene Consortium, Heath AC, Arveiler D, SJL B, Beilby J, Bergman RN, Blangero J, Bovet P, Campbell H, Caulfield MJ, Cesana G, Chakravarti A, Chasman DI, Chines PS, Collins FS, Crawford DC, Cupples LA, Cusi D, Danesh J, de Faire U, den Ruijter HM, Dominiczak AF, Erbel R, Erdmann J, Eriksson JG, Farrall M, Felix SB, Ferrannini E, Ferrières J, Ford I, Forouhi NG, Forrester T, Franco OH, Gansevoort RT, Gejman PV, Gieger C, Gottesman O, Gudnason V, Gyllensten U, Hall AS, Harris TB, Hattersley AT, Hicks AA, Hindorff LA, Hingorani AD, Hofman A, Homuth G, Hovingh GK, Humphries SE, Hunt SC, Hyppönen E, Illig T, Jacobs KB, Jarvelin MR, Jöckel KH, Johansen B, Jousilahti P, Jukema JW, Jula AM, Kaprio J, Kastelein JJP, Keinanen-Kiukaanniemi SM, Kiemeney LA, Knekt P, Kooner JS, Kooperberg C, Kovacs P, Kraja AT, Kumari M, Kuusisto J, Lakka TA, Langenberg C, Marchand LL, Lehtimäki T, Lyssenko V, Männistö S, Marette A, Matise TC, McKenzie CA, McKnight B, Moll FL, Morris AD, Morris AP, Murray JC, Nelis M, Ohlsson C, Oldehinkel AJ, Ong KK, PAF M, Pasterkamp G, Peden JF, Peters A, Postma DS, Pramstaller PP, Price JF, Qi L, Raitakari OT, Rankinen T, Rao DC, Rice TK, Ridker PM, Rioux JD, Ritchie MD, Rudan I, Salomaa V, Samani NJ, Saramies J, Sarzynski MA, Schunkert H, Schwarz PEH, Sever P, Shuldiner AR, Sinisalo J, Stolk RP, Strauch K, Tönjes A, Trégouët DA, Tremblay A, Tremoli E, Virtamo J, Vohl MC, Völker U, Waeber G, Willemsen G, Witteman JC, Zillikens MC, Adair LS, Amouyel P, Asselbergs FW, Assimes TL, Bochud M, Boehm BO, Boerwinkle E, Bornstein SR, Bottinger EP, Bouchard C, Cauchi S, Chambers JC, Chanock SJ, Cooper RS, de Bakker PIW, Dedoussis G, Ferrucci L, Franks PW, Froguel P, Groop LC, Haiman CA, Hamsten A, Hui J, Hunter DJ, Hveem K, Kaplan RC, Kivimaki M, Kuh D, Laakso M, Liu Y, Martin NG, März W, Melbye M, Metspalu A, Moebus S, Munroe PB, Njølstad I, Oostra BA, Palmer CNA, Pedersen NL, Perola M, Pérusse L, Peters U, Power C, Quertermous T, Rauramaa R, Rivadeneira F, Saaristo TE, Saleheen D, Sattar N, Schadt EE, Schlessinger D, Slagboom PE, Snieder H, Spector TD, Thorsteinsdottir U, Stumvoll M, Tuomilehto J, Uitterlinden AG, Uusitupa M, van der Harst P, Walker M, Wallaschofski H, Wareham NJ, Watkins H, Weir DR, Wichmann HE, Wilson JF, Zanen P, Borecki IB, Deloukas P, Fox CS, Heid IM, O’Connell JR, Strachan DP, Stefansson K, van Duijn CM, Abecasis GR, Franke L, Frayling TM, McCarthy MI, Visscher PM, Scherag A, Willer CJ, Boehnke M, Mohlke KL, Lindgren CM, Beckmann JS, Barroso I, North KE, Ingelsson E, Hirschhorn JN, Loos RJF, Speliotes EK (2015) Genetic studies of body mass index yield new insights for obesity biology. Nature 518(7538):197–206. https://doi.org/10.1038/nature14177CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Moreno-Navarrete JM, Jove M, Ortega F, Xifra G, Ricart W, Obis E, Pamplona R, Portero-Otin M, Fernandez-Real JM (2016) Metabolomics uncovers the role of adipose tissue PDXK in adipogenesis and systemic insulin sensitivity. Diabetologia 59(4):822–832. https://doi.org/10.1007/s00125-016-3863-1CrossRefPubMedGoogle Scholar
  56. 56.
    Abu Bakar MH, Sarmidi MR, Cheng KK, Ali Khan A, Suan CL, Zaman Huri H, Yaakob H (2015) Metabolomics – the complementary field in systems biology: a review on obesity and type 2 diabetes. Mol Biosyst 11(7):1742–1774. https://doi.org/10.1039/c5mb00158gCrossRefPubMedGoogle Scholar
  57. 57.
    Roberts LD, Koulman A, Griffin JL (2014) Towards metabolic biomarkers of insulin resistance and type 2 diabetes: progress from the metabolome. Lancet Diabetes Endocrinol 2(1):65–75. https://doi.org/10.1016/S2213-8587(13)70143-8CrossRefPubMedGoogle Scholar
  58. 58.
    Morris C, O’Grada C, Ryan M, Roche HM, Gibney MJ, Gibney ER, Brennan L (2012) The relationship between BMI and metabolomic profiles: a focus on amino acids. Proc Nutr Soc 71(4):634–638. https://doi.org/10.1017/S0029665112000699CrossRefPubMedGoogle Scholar
  59. 59.
    Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, Rochon J, Gallup D, Ilkayeva O, Wenner BR, Yancy WS Jr, Eisenson H, Musante G, Surwit RS, Millington DS, Butler MD, Svetkey LP (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9(4):311–326. https://doi.org/10.1016/j.cmet.2009.02.002CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Makki K, Froguel P, Wolowczuk I (2013) Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN Inflamm 2013:139239. https://doi.org/10.1155/2013/139239CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Sun K, Kusminski CM, Scherer PE (2011) Adipose tissue remodeling and obesity. J Clin Invest 121(6):2094–2101. https://doi.org/10.1172/JCI45887CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    La Merrill M, Emond C, Kim MJ, Antignac JP, Le Bizec B, Clement K, Birnbaum LS, Barouki R (2013) Toxicological function of adipose tissue: focus on persistent organic pollutants. Environ Health Perspect 121(2):162–169. https://doi.org/10.1289/ehp.1205485CrossRefPubMedGoogle Scholar
  63. 63.
    Frayn KN, Karpe F, Fielding BA, Macdonald IA, Coppack SW (2003) Integrative physiology of human adipose tissue. Int J Obes Relat Metab Disord 27(8):875–888. https://doi.org/10.1038/sj.ijo.0802326CrossRefPubMedGoogle Scholar
  64. 64.
    Hanzu FA, Vinaixa M, Papageorgiou A, Parrizas M, Correig X, Delgado S, Carmona F, Samino S, Vidal J, Gomis R (2014) Obesity rather than regional fat depots marks the metabolomic pattern of adipose tissue: an untargeted metabolomic approach. Obesity (Silver Spring) 22(3):698–704. https://doi.org/10.1002/oby.20541CrossRefGoogle Scholar
  65. 65.
    Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS (2008) Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134(6):933–944. https://doi.org/10.1016/j.cell.2008.07.048CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Liesenfeld DB, Grapov D, Fahrmann JF, Salou M, Scherer D, Toth R, Habermann N, Bohm J, Schrotz-King P, Gigic B, Schneider M, Ulrich A, Herpel E, Schirmacher P, Fiehn O, Lampe JW, Ulrich CM (2015) Metabolomics and transcriptomics identify pathway differences between visceral and subcutaneous adipose tissue in colorectal cancer patients: the ColoCare study. Am J Clin Nutr 102(2):433–443. https://doi.org/10.3945/ajcn.114.103804CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Perez-Cornago A, Brennan L, Ibero-Baraibar I, Hermsdorff HH, O’Gorman A, Zulet MA, Martinez JA (2014) Metabolomics identifies changes in fatty acid and amino acid profiles in serum of overweight older adults following a weight loss intervention. J Physiol Biochem 70(2):593–602. https://doi.org/10.1007/s13105-013-0311-2CrossRefPubMedGoogle Scholar
  68. 68.
    Shah SH, Crosslin DR, Haynes CS, Nelson S, Turer CB, Stevens RD, Muehlbauer MJ, Wenner BR, Bain JR, Laferrere B, Gorroochurn P, Teixeira J, Brantley PJ, Stevens VJ, Hollis JF, Appel LJ, Lien LF, Batch B, Newgard CB, Svetkey LP (2012) Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia 55(2):321–330. https://doi.org/10.1007/s00125-011-2356-5CrossRefPubMedGoogle Scholar
  69. 69.
    Sjostrom L (2013) Review of the key results from the Swedish Obese Subjects (SOS) trial – a prospective controlled intervention study of bariatric surgery. J Intern Med 273(3):219–234. https://doi.org/10.1111/joim.12012CrossRefPubMedGoogle Scholar
  70. 70.
    Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, Schoelles K (2004) Bariatric surgery: a systematic review and meta-analysis. JAMA 292(14):1724–1737. https://doi.org/10.1001/jama.292.14.1724CrossRefPubMedGoogle Scholar
  71. 71.
    Liu SY, Wong SK, Lam CC, Yung MY, Kong AP, Ng EK (2015) Long-term results on weight loss and diabetes remission after laparoscopic sleeve gastrectomy for a morbidly obese Chinese population. Obes Surg 25(10):1901–1908. https://doi.org/10.1007/s11695-015-1628-4CrossRefPubMedGoogle Scholar
  72. 72.
    Parikh M, Pomp A, Gagner M (2007) Laparoscopic conversion of failed gastric bypass to duodenal switch: technical considerations and preliminary outcomes. Surg Obes Relat Dis 3(6):611–618. doi:S1550-7289(07)00569-2 [pii]. https://doi.org/10.1016/j.soard.2007.07.010CrossRefPubMedGoogle Scholar
  73. 73.
    Mutch DM, Fuhrmann JC, Rein D, Wiemer JC, Bouillot JL, Poitou C, Clement K (2009) Metabolite profiling identifies candidate markers reflecting the clinical adaptations associated with Roux-en-Y gastric bypass surgery. PLoS One 4(11):e7905. https://doi.org/10.1371/journal.pone.0007905CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Laferrere B, Reilly D, Arias S, Swerdlow N, Gorroochurn P, Bawa B, Bose M, Teixeira J, Stevens RD, Wenner BR, Bain JR, Muehlbauer MJ, Haqq A, Lien L, Shah SH, Svetkey LP, Newgard CB (2011) Differential metabolic impact of gastric bypass surgery versus dietary intervention in obese diabetic subjects despite identical weight loss. Sci Transl Med 3(80):80re82. https://doi.org/10.1126/scitranslmed.3002043CrossRefGoogle Scholar
  75. 75.
    Whiting DR, Guariguata L, Weil C, Shaw J (2011) IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94(3):311–321. https://doi.org/10.1016/j.diabres.2011.10.029CrossRefPubMedGoogle Scholar
  76. 76.
    Huber CA, Schwenkglenks M, Rapold R, Reich O (2014) Epidemiology and costs of diabetes mellitus in Switzerland: an analysis of health care claims data, 2006 and 2011. BMC Endocr Disord 14:44. https://doi.org/10.1186/1472-6823-14-44CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Schmid R, Vollenweider P, Waeber G, Marques-Vidal P (2011) Estimating the risk of developing type 2 diabetes: a comparison of several risk scores: the Cohorte Lausannoise study. Diabetes Care 34(8):1863–1868. https://doi.org/10.2337/dc11-0206CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Marques-Vidal P, Schmid R, Bochud M, Bastardot F, von Kanel R, Paccaud F, Glaus J, Preisig M, Waeber G, Vollenweider P (2012) Adipocytokines, hepatic and inflammatory biomarkers and incidence of type 2 diabetes. the CoLaus study. PLoS One 7(12):e51768. https://doi.org/10.1371/journal.pone.0051768CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Vaxillaire M, Yengo L, Lobbens S, Rocheleau G, Eury E, Lantieri O, Marre M, Balkau B, Bonnefond A, Froguel P (2014) Type 2 diabetes-related genetic risk scores associated with variations in fasting plasma glucose and development of impaired glucose homeostasis in the prospective DESIR study. Diabetologia 57(8):1601–1610. https://doi.org/10.1007/s00125-014-3277-xCrossRefPubMedGoogle Scholar
  80. 80.
    Lin X, Song K, Lim N, Yuan X, Johnson T, Abderrahmani A, Vollenweider P, Stirnadel H, Sundseth SS, Lai E, Burns DK, Middleton LT, Roses AD, Matthews PM, Waeber G, Cardon L, Waterworth DM, Mooser V (2009) Risk prediction of prevalent diabetes in a Swiss population using a weighted genetic score – the CoLaus Study. Diabetologia 52(4):600–608. https://doi.org/10.1007/s00125-008-1254-yCrossRefPubMedGoogle Scholar
  81. 81.
    Meigs JB, Shrader P, Sullivan LM, McAteer JB, Fox CS, Dupuis J, Manning AK, Florez JC, Wilson PW, D’Agostino RB Sr, Cupples LA (2008) Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med 359(21):2208–2219. https://doi.org/10.1056/NEJMoa0804742CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Kussmann M, Morine MJ, Hager J, Sonderegger B, Kaput J (2013) Perspective: a systems approach to diabetes research. Front Genet 4:205. https://doi.org/10.3389/fgene.2013.00205CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Klein MS, Shearer J (2016) Metabolomics and type 2 diabetes: translating basic research into clinical application. J Diabetes Res 2016:3898502. https://doi.org/10.1155/2016/3898502CrossRefPubMedGoogle Scholar
  84. 84.
    Wang-Sattler R, Yu Z, Herder C, Messias AC, Floegel A, He Y, Heim K, Campillos M, Holzapfel C, Thorand B, Grallert H, Xu T, Bader E, Huth C, Mittelstrass K, Doring A, Meisinger C, Gieger C, Prehn C, Roemisch-Margl W, Carstensen M, Xie L, Yamanaka-Okumura H, Xing G, Ceglarek U, Thiery J, Giani G, Lickert H, Lin X, Li Y, Boeing H, Joost HG, de Angelis MH, Rathmann W, Suhre K, Prokisch H, Peters A, Meitinger T, Roden M, Wichmann HE, Pischon T, Adamski J, Illig T (2012) Novel biomarkers for pre-diabetes identified by metabolomics. Mol Syst Biol 8:615. https://doi.org/10.1038/msb.2012.43CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Padberg I, Peter E, Gonzalez-Maldonado S, Witt H, Mueller M, Weis T, Bethan B, Liebenberg V, Wiemer J, Katus HA, Rein D, Schatz P (2014) A new metabolomic signature in type-2 diabetes mellitus and its pathophysiology. PLoS One 9(1):e85082. https://doi.org/10.1371/journal.pone.0085082CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, Lewis GD, Fox CS, Jacques PF, Fernandez C, O’Donnell CJ, Carr SA, Mootha VK, Florez JC, Souza A, Melander O, Clish CB, Gerszten RE (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17(4):448–453. https://doi.org/10.1038/nm.2307CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Newgard CB (2012) Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab 15(5):606–614. https://doi.org/10.1016/j.cmet.2012.01.024CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Herman MA, She P, Peroni OD, Lynch CJ, Kahn BB (2010) Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J Biol Chem 285(15):11348–11356. https://doi.org/10.1074/jbc.M109.075184CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Sears DD, Hsiao G, Hsiao A, Yu JG, Courtney CH, Ofrecio JM, Chapman J, Subramaniam S (2009) Mechanisms of human insulin resistance and thiazolidinedione-mediated insulin sensitization. Proc Natl Acad Sci U S A 106(44):18745–18750. https://doi.org/10.1073/pnas.0903032106CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Kaeberlein M, Rabinovitch PS, Martin GM (2015) Healthy aging: the ultimate preventative medicine. Science 350(6265):1191–1193. https://doi.org/10.1126/science.aad3267CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Jove M, Portero-Otin M, Naudi A, Ferrer I, Pamplona R (2014) Metabolomics of human brain aging and age-related neurodegenerative diseases. J Neuropathol Exp Neurol 73(7):640–657. https://doi.org/10.1097/nen.0000000000000091CrossRefPubMedGoogle Scholar
  92. 92.
    Magistretti PJ, Allaman I (2015) A cellular perspective on brain energy metabolism and functional imaging. Neuron 86(4):883–901. https://doi.org/10.1016/j.neuron.2015.03.035CrossRefPubMedGoogle Scholar
  93. 93.
    Trushina E, Dutta T, Persson XM, Mielke MM, Petersen RC (2013) Identification of altered metabolic pathways in plasma and CSF in mild cognitive impairment and Alzheimer’s disease using metabolomics. PLoS One 8(5):e63644. https://doi.org/10.1371/journal.pone.0063644CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Toledo JB, Arnold M, Kastenmüller G, Chang R, Baillie RA, Han X, Thambisetty M, Tenenbaum JD, Suhre K, Thompson JW, John-Williams LS, MahmoudianDehkordi S, Rotroff DM, Jack JR, Motsinger-Reif A, Risacher SL, Blach C, Lucas JE, Massaro T, Louie G, Zhu H, Dallmann G, Klavins K, Koal T, Kim S, Nho K, Shen L, Casanova R, Varma S, Legido-Quigley C, Moseley MA, Zhu K, Henrion MYR, van der Lee SJ, Harms AC, Demirkan A, Hankemeier T, van Duijn CM, Trojanowski JQ, Shaw LM, Saykin AJ, Weiner MW, Doraiswamy PM, Kaddurah-Daouk R (2017) Metabolic network failures in Alzheimer’s disease – a biochemical road map. Alzheimers Dement 13(9):965–984. https://doi.org/10.1016/j.jalz.2017.01.020CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Mink JW, Blumenschine RJ, Adams DB (1981) Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis. Am J Physiol 241(3):R203–R212PubMedGoogle Scholar
  96. 96.
    Paglia G, Stocchero M, Cacciatore S, Lai S, Angel P, Alam MT, Keller M, Ralser M, Astarita G (2016) Unbiased metabolomic investigation of Alzheimer’s disease brain points to dysregulation of mitochondrial aspartate metabolism. J Proteome Res 15(2):608–618. https://doi.org/10.1021/acs.jproteome.5b01020CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Kapogiannis D, Mattson MP (2011) Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease. Lancet Neurol 10(2):187–198. https://doi.org/10.1016/s1474-4422(10)70277-5CrossRefPubMedGoogle Scholar
  98. 98.
    Trushina E, Nemutlu E, Zhang S, Christensen T, Camp J, Mesa J, Siddiqui A, Tamura Y, Sesaki H, Wengenack TM, Dzeja PP, Poduslo JF (2012) Defects in mitochondrial dynamics and metabolomic signatures of evolving energetic stress in mouse models of familial Alzheimer’s disease. PLoS One 7(2):e32737. https://doi.org/10.1371/journal.pone.0032737CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Han X, Rozen S, Boyle SH, Hellegers C, Cheng H, Burke JR, Welsh-Bohmer KA, Doraiswamy PM, Kaddurah-Daouk R (2011) Metabolomics in early Alzheimer’s disease: identification of altered plasma sphingolipidome using shotgun lipidomics. PLoS One 6(7):e21643. https://doi.org/10.1371/journal.pone.0021643CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Mapstone M, Cheema AK, Fiandaca MS, Zhong X, Mhyre TR, MacArthur LH, Hall WJ, Fisher SG, Peterson DR, Haley JM, Nazar MD, Rich SA, Berlau DJ, Peltz CB, Tan MT, Kawas CH, Federoff HJ (2014) Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med 20(4):415–418. https://doi.org/10.1038/nm.3466CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Kang J, Lu J, Zhang X (2015) Metabolomics-based promising candidate biomarkers and pathways in Alzheimer’s disease. Pharmazie 70(5):277–282PubMedGoogle Scholar
  102. 102.
    Ansoleaga B, Jove M, Schluter A, Garcia-Esparcia P, Moreno J, Pujol A, Pamplona R, Portero-Otin M, Ferrer I (2015) Deregulation of purine metabolism in Alzheimer’s disease. Neurobiol Aging 36(1):68–80. https://doi.org/10.1016/j.neurobiolaging.2014.08.004CrossRefPubMedGoogle Scholar
  103. 103.
    Mattson MP (1998) Modification of ion homeostasis by lipid peroxidation: roles in neuronal degeneration and adaptive plasticity. Trends Neurosci 21(2):53–57CrossRefPubMedGoogle Scholar
  104. 104.
    Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in neuroplasticity and neurological disorders. Neuron 60(5):748–766. https://doi.org/10.1016/j.neuron.2008.10.010CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Payne BAI, Chinnery PF (2015) Mitochondrial dysfunction in aging: Much progress but many unresolved questions. Biochimica et Biophysica Acta 1847(11):1347–1353CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, Ryu D, Cantó C, Mottis A, Jo Y-S, Viswanathan M, Schoonjans K, Guarente L, Auwerx J (2013) The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154(2):430–441. https://doi.org/10.1016/j.cell.2013.06.016CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Ibanez C, Simo C, Martin-Alvarez PJ, Kivipelto M, Winblad B, Cedazo-Minguez A, Cifuentes A (2012) Toward a predictive model of Alzheimer’s disease progression using capillary electrophoresis-mass spectrometry metabolomics. Anal Chem 84(20):8532–8540. https://doi.org/10.1021/ac301243kCrossRefPubMedGoogle Scholar
  108. 108.
    Graham SF, Chevallier OP, Roberts D, Holscher C, Elliott CT, Green BD (2013) Investigation of the human brain metabolome to identify potential markers for early diagnosis and therapeutic targets of Alzheimer’s disease. Anal Chem 85(3):1803–1811. https://doi.org/10.1021/ac303163fCrossRefPubMedGoogle Scholar
  109. 109.
    Wishart DS (2015) Is cancer a genetic disease or a metabolic disease? EBioMedicine 2(6):478–479. https://doi.org/10.1016/j.ebiom.2015.05.022CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Hanahan D, Weinberg RA Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013
  111. 111.
    Otto AM (2016) Warburg effect(s)—a biographical sketch of Otto Warburg and his impacts on tumor metabolism. Cancer Metab 4:5. https://doi.org/10.1186/s40170-016-0145-9CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Yang M, Soga T, Pollard PJ (2013) Oncometabolites: linking altered metabolism with cancer. J Clin Invest 123(9):3652–3658. https://doi.org/10.1172/JCI67228CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Morin A, Letouze E, Gimenez-Roqueplo AP, Favier J (2014) Oncometabolites-driven tumorigenesis: From genetics to targeted therapy. Int J Cancer 135(10):2237–2248. https://doi.org/10.1002/ijc.29080CrossRefPubMedGoogle Scholar
  114. 114.
    Wang X, Yang K, Xie Q, Wu Q, Mack SC, Shi Y, Kim LJ, Prager BC, Flavahan WA, Liu X, Singer M, Hubert CG, Miller TE, Zhou W, Huang Z, Fang X, Regev A, Suva ML, Hwang TH, Locasale JW, Bao S, Rich JN (2017) Purine synthesis promotes maintenance of brain tumor initiating cells in glioma. Nat Neurosci 20(5):661–673. https://doi.org/10.1038/nn.4537CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Chang CH, Pearce EL (2016) Emerging concepts of T cell metabolism as a target of immunotherapy. Nat Immunol 17(4):364–368. https://doi.org/10.1038/ni.3415CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Shin SY, Fauman EB, Petersen AK, Krumsiek J, Santos R, Huang J, Arnold M, Erte I, Forgetta V, Yang TP, Walter K, Menni C, Chen L, Vasquez L, Valdes AM, Hyde CL, Wang V, Ziemek D, Roberts P, Xi L, Grundberg E, Multiple Tissue Human Expression Resource Consortium, Waldenberger M, Richards JB, Mohney RP, Milburn MV, John SL, Trimmer J, Theis FJ, Overington JP, Suhre K, Brosnan MJ, Gieger C, Kastenmuller G, Spector TD, Soranzo N (2014) An atlas of genetic influences on human blood metabolites. Nat Genet 46(6):543–550. https://doi.org/10.1038/ng.2982CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Draisma HH, Pool R, Kobl M, Jansen R, Petersen AK, Vaarhorst AA, Yet I, Haller T, Demirkan A, Esko T, Zhu G, Bohringer S, Beekman M, van Klinken JB, Romisch-Margl W, Prehn C, Adamski J, de Craen AJ, van Leeuwen EM, Amin N, Dharuri H, Westra HJ, Franke L, de Geus EJ, Hottenga JJ, Willemsen G, Henders AK, Montgomery GW, Nyholt DR, Whitfield JB, Penninx BW, Spector TD, Metspalu A, Eline Slagboom P, van Dijk KW, t Hoen PA, Strauch K, Martin NG, van Ommen GJ, Illig T, Bell JT, Mangino M, Suhre K, McCarthy MI, Gieger C, Isaacs A, van Duijn CM, Boomsma DI (2015) Genome-wide association study identifies novel genetic variants contributing to variation in blood metabolite levels. Nat Commun 6:7208. https://doi.org/10.1038/ncomms8208CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Suhre K, Shin SY, Petersen AK, Mohney RP, Meredith D, Wagele B, Altmaier E, CARDIoGRAM, Deloukas P, Erdmann J, Grundberg E, Hammond CJ, de Angelis MH, Kastenmuller G, Kottgen A, Kronenberg F, Mangino M, Meisinger C, Meitinger T, Mewes HW, Milburn MV, Prehn C, Raffler J, Ried JS, Romisch-Margl W, Samani NJ, Small KS, Wichmann HE, Zhai G, Illig T, Spector TD, Adamski J, Soranzo N, Gieger C (2011) Human metabolic individuality in biomedical and pharmaceutical research. Nature 477(7362):54–60. https://doi.org/10.1038/nature10354CrossRefPubMedGoogle Scholar
  119. 119.
    Kaddurah-Daouk R, Weinshilboum R, Pharmacometabolomics Research Network (2015) Metabolomic signatures for drug response phenotypes: pharmacometabolomics enables precision medicine. Clin Pharmacol Ther 98(1):71–75. https://doi.org/10.1002/cpt.134CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Everett JR (2016) From metabonomics to pharmacometabonomics: the role of metabolic profiling in personalized medicine. Front Pharmacol 7:297. https://doi.org/10.3389/fphar.2016.00297CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Lewis JP, Yerges-Armstrong LM, Ellero-Simatos S, Georgiades A, Kaddurah-Daouk R, Hankemeier T (2013) Integration of pharmacometabolomic and pharmacogenomic approaches reveals novel insights into antiplatelet therapy. Clin Pharmacol Ther 94(5):570–573. https://doi.org/10.1038/clpt.2013.153CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Neavin D, Kaddurah-Daouk R, Weinshilboum R (2016) Pharmacometabolomics informs Pharmacogenomics. Metabolomics 12(7). https://doi.org/10.1007/s11306-016-1066-x
  123. 123.
    Nicholson JK, Connelly J, Lindon JC, Holmes E (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1(2):153–161. https://doi.org/10.1038/nrd728CrossRefPubMedGoogle Scholar
  124. 124.
    Spear BB, Heath-Chiozzi M, Huff J (2001) Clinical application of pharmacogenetics. Trends Mol Med 7(5):201–204CrossRefPubMedGoogle Scholar
  125. 125.
    Bosilkovska M, Samer CF, Deglon J, Rebsamen M, Staub C, Dayer P, Walder B, Desmeules JA, Daali Y (2014) Geneva cocktail for cytochrome p450 and P-glycoprotein activity assessment using dried blood spots. Clin Pharmacol Ther 96(3):349–359. https://doi.org/10.1038/clpt.2014.83CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Konig J, Muller F, Fromm MF (2013) Transporters and drug-drug interactions: important determinants of drug disposition and effects. Pharmacol Rev 65(3):944–966. https://doi.org/10.1124/pr.113.007518CrossRefPubMedGoogle Scholar
  127. 127.
    Kohler GI, Bode-Boger SM, Busse R, Hoopmann M, Welte T, Boger RH (2000) Drug-drug interactions in medical patients: effects of in-hospital treatment and relation to multiple drug use. Int J Clin Pharmacol Ther 38(11):504–513CrossRefPubMedGoogle Scholar
  128. 128.
    Chainuvati S, Nafziger AN, Leeder JS, Gaedigk A, Kearns GL, Sellers E, Zhang Y, Kashuba AD, Rowland E, Bertino JS Jr (2003) Combined phenotypic assessment of cytochrome p450 1A2, 2C9, 2C19, 2D6, and 3A, N-acetyltransferase-2, and xanthine oxidase activities with the "Cooperstown 5+1 cocktail". Clin Pharmacol Ther 74(5):437–447. https://doi.org/10.1016/S0009-9236(03)00229-7CrossRefPubMedGoogle Scholar
  129. 129.
    Dumond JB, Vourvahis M, Rezk NL, Patterson KB, Tien HC, White N, Jennings SH, Choi SO, Li J, Wagner MJ, La-Beck NM, Drulak M, Sabo JP, Castles MA, Macgregor TR, Kashuba AD (2010) A phenotype-genotype approach to predicting CYP450 and P-glycoprotein drug interactions with the mixed inhibitor/inducer tipranavir/ritonavir. Clin Pharmacol Ther 87(6):735–742. https://doi.org/10.1038/clpt.2009.253CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Daali Y, Samer C, Deglon J, Thomas A, Chabert J, Rebsamen M, Staub C, Dayer P, Desmeules J (2012) Oral flurbiprofen metabolic ratio assessment using a single-point dried blood spot. Clin Pharmacol Ther. https://doi.org/10.1038/clpt.2011.247
  131. 131.
    Bosilkovska M, Samer C, Deglon J, Thomas A, Walder B, Desmeules J, Daali Y (2016) Evaluation of mutual drug-drug interaction within Geneva cocktail for cytochrome P450 phenotyping using innovative dried blood sampling method. Basic Clin Pharmacol Toxicol 119(3):284–290. https://doi.org/10.1111/bcpt.12586CrossRefPubMedGoogle Scholar
  132. 132.
    Krumsiek J, Suhre K, Evans AM, Mitchell MW, Mohney RP, Milburn MV, Wagele B, Romisch-Margl W, Illig T, Adamski J, Gieger C, Theis FJ, Kastenmuller G (2012) Mining the unknown: a systems approach to metabolite identification combining genetic and metabolic information. PLoS Genet 8(10):e1003005. https://doi.org/10.1371/journal.pgen.1003005CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Tay-Sontheimer J, Shireman LM, Beyer RP, Senn T, Witten D, Pearce RE, Gaedigk A, Gana Fomban CL, Lutz JD, Isoherranen N, Thummel KE, Fiehn O, Leeder JS, Lin YS (2014) Detection of an endogenous urinary biomarker associated with CYP2D6 activity using global metabolomics. Pharmacogenomics 15(16):1947–1962. https://doi.org/10.2217/pgs.14.155CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Waters MD, Fostel JM (2004) Toxicogenomics and systems toxicology: aims and prospects. Nat Rev Genet 5(12):936–948. https://doi.org/10.1038/nrg1493CrossRefPubMedGoogle Scholar
  135. 135.
    Bersanelli M, Mosca E, Remondini D, Giampieri E, Sala C, Castellani G, Milanesi L (2016) Methods for the integration of multi-omics data: mathematical aspects. BMC Bioinformatics 17(Suppl 2):15. https://doi.org/10.1186/s12859-015-0857-9CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Metabolomics Platform, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
  2. 2.Unit of Toxicology, CURMLCHUV Lausanne University Hospital, HUG Geneva University HospitalsLausanneSwitzerland
  3. 3.Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland

Personalised recommendations