Skip to main content

Assessment of the Effects of a Wireless Neural Stimulation Mediated by Piezoelectric Nanoparticles

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 135))

Abstract

Wireless neuronal stimulation, mediated by ultrasounds and piezoelectric nanoparticles, represents an unprecedented approach aimed at cell activation. Recently, we demonstrated that barium titanate nanoparticles behave as excellent nanotransducers, by eliciting specific cell response following treatment with ultrasounds. In this chapter, we describe in detail the techniques exploited to investigate the nanoparticle/cell interactions and the activation of the neuronal-like cultures in terms of sodium and calcium fluxes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Deisseroth K (2015) Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci 18:1213–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Benabid AL, Chabardes S, Mitrofanis J, Pollak P (2009) Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol 8:67–81

    Article  PubMed  Google Scholar 

  3. Vidailhet M, Vercueil L, Houeto J-L, Krystkowiak P, Benabid A-L, Cornu P, Lagrange C, Tézenas du Montcel S, Dormont D, Grand S, Blond S, Detante O, Pillon B, Ardouin C, Agid Y, Destée A, Pollak P, French Stimulation du Pallidum Interne dans la Dystonie (SPIDY) Study Group (2005) Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N Engl J Med 352:459–467

    Article  CAS  PubMed  Google Scholar 

  4. Schlaug G, Renga V, Nair D (2008) Transcranial direct current stimulation in stroke recovery. Arch Neurol 65:1571–1576

    Article  PubMed  PubMed Central  Google Scholar 

  5. Reithler J, Peters JC, Sack AT (2011) Multimodal transcranial magnetic stimulation: using concurrent neuroimaging to reveal the neural network dynamics of noninvasive brain stimulation. Prog Neurobiol 94:149–165

    Article  CAS  PubMed  Google Scholar 

  6. Stanley SA, Gagner JE, Damanpour S, Yoshida M, Dordick JS, Friedman JM (2012) Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science 336:604–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Seijo FJ, Alvarez-Vega MA, Gutierrez JC, Fdez-Glez F, Lozano B (2007) Complications in subthalamic nucleus stimulation surgery for treatment of Parkinson’s disease. Review of 272 procedures. Acta Neurochir 149:867–875; discussion 876

    Article  CAS  PubMed  Google Scholar 

  8. Wagner T, Valero-Cabre A, Pascual-Leone A (2007) Noninvasive human brain stimulation. Annu Rev Biomed Eng 9:527–565

    Article  CAS  PubMed  Google Scholar 

  9. Barker AT (1999) The history and basic principles of magnetic nerve stimulation. Electroencephalogr Clin Neurophysiol Suppl 51:3–21

    CAS  PubMed  Google Scholar 

  10. Tufail Y, Yoshihiro A, Pati S, Li MM, Tyler WJ (2011) Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound. Nat Protoc 6:1453–1470

    Article  CAS  PubMed  Google Scholar 

  11. Zhao Y, Liao Q, Zhang G, Zhang Z, Liang Q, Liao X, Zhang Y (2015) High output piezoelectric nanocomposite generators composed of oriented BaTiO3 NPs@PVDF. Nano Energy 11:719–727

    Article  CAS  Google Scholar 

  12. Wang X, Liu J, Song J, Wang ZL (2007) Integrated nanogenerators in biofluid. Nano Lett 7:2475–2479

    Article  CAS  PubMed  Google Scholar 

  13. Royo-Gascon N, Wininger M, Scheinbeim JI, Firestein BL, Craelius W (2013) Piezoelectric substrates promote neurite growth in rat spinal cord neurons. Ann Biomed Eng 41:112–122

    Article  PubMed  Google Scholar 

  14. Inaoka T, Shintaku H, Nakagawa T, Kawano S, Ogita H, Sakamoto T, Hamanishi S, Wada H, Ito J (2011) Piezoelectric materials mimic the function of the cochlear sensory epithelium. Proc Natl Acad Sci U S A 108:18390–18395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ciofani G, Danti S, D’Alessandro D, Ricotti L, Moscato S, Bertoni G, Falqui A, Berrettini S, Petrini M, Mattoli V, Menciassi A (2010) Enhancement of neurite outgrowth in neuronal-like cells following boron nitride nanotube-mediated stimulation. ACS Nano 4:6267–6277

    Article  CAS  PubMed  Google Scholar 

  16. Marino A, Arai S, Hou Y, Sinibaldi E, Pellegrino M, Chang Y-T, Mazzolai B, Mattoli V, Suzuki M, Ciofani G (2015) Piezoelectric nanoparticle-assisted wireless neuronal stimulation. ACS Nano 9:7678–7689

    Article  CAS  PubMed  Google Scholar 

  17. Kovalevich J, Langford D (2013) Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol Biol 1078:9–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank Mr. Piero Narducci (Department of Chemical Engineering, University of Pisa, Pisa, Italy) for XRD technical assistance. This research was partially supported by the Italian Ministry of Health Grant Number RF-2011-02350464 (to G.C.), by the JSPS KAKENHI Grant Number 26107717 (to M.S.), and by the JSPS Core-to-Core Program, A. Advanced Research Networks (to M.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Ciofani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Marino, A. et al. (2018). Assessment of the Effects of a Wireless Neural Stimulation Mediated by Piezoelectric Nanoparticles. In: Santamaria, F., Peralta, X. (eds) Use of Nanoparticles in Neuroscience. Neuromethods, vol 135. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7584-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7584-6_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7582-2

  • Online ISBN: 978-1-4939-7584-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics