Skip to main content

Regulating Growth Cone Motility and Axon Growth by Manipulating Targeted Superparamagnetic Nanoparticles

  • Protocol
  • First Online:
Use of Nanoparticles in Neuroscience

Part of the book series: Neuromethods ((NM,volume 135))

Abstract

Central nervous system (CNS) neurons fail to regenerate after injury or disease due, in part, to a reduced intrinsic axon growth ability, which is regulated at the growth cone. Recently, we showed that growth cone motility can be regulated by applying a magnetic field to superparamagnetic iron oxide nanoparticles (SPIONs) targeted either intracellularly to signaling endosomes or extracellularly to cell surface receptors. By applying mechanical forces to extracellular SPIONs, filopodia can be elongated and the rate and the direction controlled. Here, we describe the methods for each of these approaches with additional notes on important caveats and experimental design considerations. These methods offer new approaches to studying growth cone motility and axon growth biology, expanding our knowledge and thus our ability to develop new therapies to promote axon regeneration after nervous system trauma or disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sipperley JO, Quigley HA, Gass DM (1978) Traumatic retinopathy in primates. The explanation of commotio retinae. Arch Ophthalmol 96:2267–2273

    Article  CAS  PubMed  Google Scholar 

  2. Berkelaar M, Clarke DB, Wang YC, Bray GM, Aguayo AJ (1994) Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats. J Neurosci 14:4368–4374

    CAS  PubMed  Google Scholar 

  3. Goldberg JL, Klassen MP, Hua Y, Barres BA (2002) Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science 296:1860–1864

    Article  CAS  PubMed  Google Scholar 

  4. Lathrop KL, Steketee MB (2013) Mitochondrial dynamics in retinal ganglion cell axon regeneration and growth cone guidance. J Ocul Biol 1:9

    PubMed  PubMed Central  Google Scholar 

  5. Mansour-Robaey S, Clarke DB, Wang YC, Bray GM, Aguayo AJ (1994) Effects of ocular injury and administration of brain-derived neurotrophic factor on survival and regrowth of axotomized retinal ganglion cells. Proc Natl Acad Sci U S A 91:1632–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McKeon RJ, Jurynec MJ, Buck CR (1999) The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar. J Neurosci 19:10778–10788

    CAS  PubMed  Google Scholar 

  7. Tang S, Qiu J, Nikulina E, Filbin MT (2001) Soluble myelin-associated glycoprotein released from damaged white matter inhibits axonal regeneration. Mol Cell Neurosci 18:259–269

    Article  CAS  PubMed  Google Scholar 

  8. Horn KP, Busch SA, Hawthorne AL, van Rooijen N, Silver J (2008) Another barrier to regeneration in the CNS: activated macrophages induce extensive retraction of dystrophic axons through direct physical interactions. J Neurosci 28:9330–9341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kurimoto T, Yin Y, Omura K, Gilbert HY, Kim D, Cen LP, Moko L, Kugler S, Benowitz LI (2010) Long-distance axon regeneration in the mature optic nerve: contributions of oncomodulin, cAMP, and pten gene deletion. J Neurosci 30:15654–15663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de Lima S, Habboub G, Benowitz LI (2012) Combinatorial therapy stimulates long-distance regeneration, target reinnervation, and partial recovery of vision after optic nerve injury in mice. Int Rev Neurobiol 106:153–172

    Article  PubMed  Google Scholar 

  11. Bray GM, Vidal-Sanz M, Aguayo AJ (1987) Regeneration of axons from the central nervous system of adult rats. Prog Brain Res 71:373–379

    Article  CAS  PubMed  Google Scholar 

  12. Pita-Thomas W (2015) Magnetic nanotechnology to study and promote axon growth. Neural Regen Res 10:1037–1039

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lee JH, Kim ES, Cho MH, Son M, Yeon SI, Shin JS, Cheon J (2010) Artificial control of cell signaling and growth by magnetic nanoparticles. Angew Chem 49:5698–5702

    Article  CAS  Google Scholar 

  14. Mannix RJ, Kumar S, Cassiola F, Montoya-Zavala M, Feinstein E, Prentiss M, Ingber DE (2008) Nanomagnetic actuation of receptor-mediated signal transduction. Nat Nanotechnol 3:36–40

    Article  CAS  PubMed  Google Scholar 

  15. Cho MH, Lee EJ, Son M, Lee JH, Yoo D, Kim JW, Park SW, Shin JS, Cheon J (2012) A magnetic switch for the control of cell death signalling in in vitro and in vivo systems. Nat Mater 11:1038–1043

    Article  CAS  PubMed  Google Scholar 

  16. Hoffmann C, Mazari E, Lallet S, Le Borgne R, Marchi V, Gosse C, Gueroui Z (2013) Spatiotemporal control of microtubule nucleation and assembly using magnetic nanoparticles. Nat Nanotechnol 8:199–205

    Article  CAS  PubMed  Google Scholar 

  17. Magdesian MH, Lopez-Ayon GM, Mori M, Boudreau D, Goulet-Hanssens A, Sanz R, Miyahara Y, Barrett CJ, Fournier AE, De Koninck Y, Grutter P (2016) Rapid mechanically controlled rewiring of neuronal circuits. J Neurosci 36:979–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Steketee MB, Moysidis SN, Jin XL, Weinstein JE, Pita-Thomas W, Raju HB, Iqbal S, Goldberg JL (2011) Nanoparticle-mediated signaling endosome localization regulates growth cone motility and neurite growth. Proc Natl Acad Sci U S A 108:19042–19047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pita-Thomas W, Steketee MB, Moysidis SN, Thakor K, Hampton B, Goldberg JL (2015) Promoting filopodial elongation in neurons by membrane-bound magnetic nanoparticles. Nanomedicine 11:559–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hu Y, Cho S, Goldberg JL (2010) Neurotrophic effect of a novel TrkB agonist on retinal ganglion cells. Invest Ophthalmol Vis Sci 51:1747–1754

    Article  PubMed  PubMed Central  Google Scholar 

  21. Beale R, Osborne NN (1982) Localization of the Thy-1 antigen to the surfaces of rat retinal ganglion cells. Neurochem Int 4:587–595

    Article  CAS  PubMed  Google Scholar 

  22. Hansson HA, Holmgren J, Svennerholm L (1977) Ultrastructural localization of cell membrane GM1 ganglioside by cholera toxin. Proc Natl Acad Sci U S A 74:3782–3786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Blank N, Schiller M, Krienke S, Wabnitz G, Ho AD, Lorenz HM (2007) Cholera toxin binds to lipid rafts but has a limited specificity for ganglioside GM1. Immunol Cell Biol 85:378–382

    Article  CAS  PubMed  Google Scholar 

  24. Néel L (1949) Théorie du traînage magnétique des ferromagnétiques en grains fins avec application aux terres cuites. Annales de Géophysique 5:99–136

    Google Scholar 

  25. Barres BA, Silverstein BE, Corey DP, Chun LLY (1988) Immunological, morphological, and electrophysiological variation among retinal ganglion-cells purified by panning. Neuron 1:791–803

    Article  CAS  PubMed  Google Scholar 

  26. Frigault MM, Lacoste J, Swift JL, Brown CM (2009) Live-cell microscopy - tips and tools. J Cell Sci 122:753–767

    Article  CAS  PubMed  Google Scholar 

  27. Grady LH, Nonneman DJ, Rottinghaus GE, Welshons WV (1991) pH-dependent cytotoxicity of contaminants of phenol red for MCF-7 breast cancer cells. Endocrinology 129:3321–3330

    Article  CAS  PubMed  Google Scholar 

  28. Greenberg SS, Johns A, Kleha J, Xie J, Wang Y, Bianchi J, Conley K (1994) Phenol red is a thromboxane A2/prostaglandin H2 receptor antagonist in canine lingual arteries and human platelets. J Pharmacol Exp Ther 268:1352–1361

    CAS  PubMed  Google Scholar 

  29. Fass JN, Odde DJ (2003) Tensile force-dependent neurite elicitation via anti-beta1 integrin antibody-coated magnetic beads. Biophys J 85:623–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Steketee MB, Tosney KW (2002) Three functionally distinct adhesions in filopodia: shaft adhesions control lamellar extension. J Neurosci 22:8071–8083

    CAS  PubMed  Google Scholar 

  31. Steketee M, Balazovich K, Tosney KW (2001) Filopodial initiation and a novel filament-organizing center, the focal ring. Mol Biol Cell 12:2378–2395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Steketee MB, Tosney KW (1999) Contact with isolated sclerotome cells steers sensory growth cones by altering distinct elements of extension. J Neurosci 19:3495–3506

    CAS  PubMed  Google Scholar 

  33. Viancour TA, Kreiter NA (1993) Vesicular fast axonal transport rates in young and old rat axons. Brain Res 628:209–217

    Article  CAS  PubMed  Google Scholar 

  34. Won J, Kim M, Yi YW, Kim YH, Jung N, Kim TK (2005) A magnetic nanoprobe technology for detecting molecular interactions in live cells. Science 309:121–125

    Article  CAS  PubMed  Google Scholar 

  35. Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D, Bista M, Bradke F, Jenne D, Holak TA, Werb Z, Sixt M, Wedlich-Soldner R (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5:605–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Corredor RG, Trakhtenberg EF, Pita-Thomas W, Jin XL, Hu Y, Goldberg JL (2012) Soluble adenylyl cyclase activity is necessary for retinal ganglion cell survival and axon growth. J Neurosci 32:7734–7744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Steketee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ren, T., Goldberg, J.L., Steketee, M.B. (2018). Regulating Growth Cone Motility and Axon Growth by Manipulating Targeted Superparamagnetic Nanoparticles. In: Santamaria, F., Peralta, X. (eds) Use of Nanoparticles in Neuroscience. Neuromethods, vol 135. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7584-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7584-6_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7582-2

  • Online ISBN: 978-1-4939-7584-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics