Skip to main content

Gold Nanoparticles as Nucleation Centers for Amyloid Fibrillation

  • Protocol
  • First Online:
Use of Nanoparticles in Neuroscience

Part of the book series: Neuromethods ((NM,volume 135))

Abstract

The aggregation of proteins into amyloid fibrils is related to more than 30 diseases, including the most common neurodegenerative conditions. Amyloid fibrillation is a nucleation-dependent polymerization reaction where monomeric protein first assembles into oligomers that in turn serve as nuclei for fibril formation. Recently, nanoparticles of various compositions and sizes have been investigated as nucleation centers for amyloid fibrillation. The interaction of nanoparticles with amyloid proteins can generate intermediate structures able to accelerate or inhibit fibrillation, and therefore, they constitute a tool to control and manipulate amyloid fibrillation which may be the key to elucidate molecular mechanisms or to devise therapies. In this chapter, we first give a general overview about the use of nanoparticles as artificial nucleation centers for amyloid aggregation, and then we focus on gold nanoparticles providing detailed protocols for their functionalization and use in amyloid fibrillation assays.

  1. 1.

    Amyloid fibrillation as a nucleation and growth polymerization.

  2. 2.

    Nanoparticles as nucleation centers.

  3. 3.

    Unique properties of gold nanoparticles.

  4. 4.

    Fabrication and surface modification of gold nanoparticles.

  5. 5.

    Amyloid aggregation assays with gold nanoparticles.

  6. 6.

    Protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Knowles TPJ, Buehler MJ (2011) Nanomechanics of functional and pathological amyloid materials. Nat Nanotechnol 6:469–479

    Article  CAS  PubMed  Google Scholar 

  2. Arosio P, Knowles TPJ, Linse S (2015) On the lag phase in amyloid fibril formation. Phys Chem Chem Phys 17:7606–7618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lansbury PT, Lashuel HA (2006) A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature 443:774–779

    Article  CAS  PubMed  Google Scholar 

  4. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  CAS  PubMed  Google Scholar 

  5. Winner B et al (2011) In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci 108:4194–4199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lashuel HA, Overk CR, Oueslati A, Masliah E (2013) The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci 14:38–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Otzen DE (ed.) (2013) Amyloid fibrils and prefibrillar aggregates: molecular and biological properties. Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany ISBN: 978-3-527-33200-7

    Google Scholar 

  8. Morris AM, Watzky MA, Finke RG (2009) Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature. Biochim Biophys Acta 1794:375–397

    Article  CAS  PubMed  Google Scholar 

  9. Morris AM, Finke RG (2009) Alpha-synuclein aggregation variable temperature and variable pH kinetic data: a re-analysis using the Finke-Watzky 2-step model of nucleation and autocatalytic growth. Biophys Chem 140:9–15

    Article  CAS  PubMed  Google Scholar 

  10. Buell AK, Dobson CM, Knowles TPJ (2014) The physical chemistry of the amyloid phenomenon: thermodynamics and kinetics of filamentous protein aggregation. Essays Biochem 56:11–39

    Article  PubMed  Google Scholar 

  11. Pellarin R, Caflisch A (2006) Interpreting the aggregation kinetics of amyloid peptides. J Mol Biol 360:882–892

    Article  CAS  PubMed  Google Scholar 

  12. Uversky VN, Fink AL (2004) Conformational constraints for amyloid fibrillation: the importance of being unfolded. Biochim Biophys Acta 1698:131–153

    Article  CAS  PubMed  Google Scholar 

  13. Pimplikar SW (2009) Reassessing the amyloid cascade hypothesis of Alzheimer’s disease. Int J Biochem Cell Biol 41:1261–1268

    Article  CAS  PubMed  Google Scholar 

  14. Liu Y, Carver JA, Calabrese AN, Pukala TL (2014) Gallic acid interacts with α-synuclein to prevent the structural collapse necessary for its aggregation. Biochim Biophys Acta Proteins Proteomics 1844:1481–1485

    Article  CAS  Google Scholar 

  15. Lorenzen N et al (2014) How epigallocatechin gallate can inhibit α-synuclein oligomer toxicity in vitro. J Biol Chem 289:21299–21310

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ardah MT et al (2014) Structure activity relationship of phenolic acid inhibitors of α-synuclein fibril formation and toxicity. Front Aging Neurosci 6:1–17

    Article  Google Scholar 

  17. Mason JM, Kokkoni N, Stott K, Doig AJ (2003) Design strategies for anti-amyloid agents. Curr Opin Struct Biol 13:526–532

    Article  CAS  PubMed  Google Scholar 

  18. Alvarez YD et al (2013) Influence of gold nanoparticles on the kinetics of α-synuclein aggregation. Nano Lett 13:6156–6163

    Article  CAS  PubMed  Google Scholar 

  19. Cabaleiro-Lago C, Szczepankiewicz O, Linse S (2012) The effect of nanoparticles on amyloid aggregation depends on the protein stability and intrinsic aggregation rate. Langmuir 28:1852–1857

    Article  CAS  PubMed  Google Scholar 

  20. Mirsadeghi S et al (2015) Protein corona composition of gold nanoparticles/nanorods affects amyloid beta fibrillation process. Nanoscale 7:5004–5013

    Article  CAS  PubMed  Google Scholar 

  21. Mahmoudi M et al (2013) The protein corona mediates the impact of nanomaterials and slows amyloid beta fibrillation. ChemBioChem 14:568–572

    Article  CAS  PubMed  Google Scholar 

  22. Goy-López S et al (2012) Physicochemical characteristics of protein-NP bioconjugates: the role of particle curvature and solution conditions on human serum albumin conformation and fibrillogenesis inhibition. Langmuir 28:9113–9126

    Article  PubMed  Google Scholar 

  23. Roberti MJ, Morgan M (2009) Quantum dots as ultrasensitive nanoactuators and sensors of amyloid aggregation in live cells. J Am Chem Soc 131:8102–8107

    Article  CAS  PubMed  Google Scholar 

  24. Galvagnion C et al (2015) Lipid vesicles trigger α-synuclein aggregation by stimulating primary nucleation. Nat Chem Biol 11:229–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mohammad-Beigi H et al (2015) Strong interactions with polyethylenimine-coated human serum albumin nanoparticles (PEI-HSA NPs) alter α-synuclein conformation and aggregation kinetics. Nanoscale 7:19627–19640

    Article  CAS  PubMed  Google Scholar 

  26. Joshi N et al (2015) Attenuation of the early events of α-synuclein aggregation: a fluorescence correlation spectroscopy and laser scanning microscopy study in the presence of surface-coated Fe3O4 nanoparticles. Langmuir 31:1469–1478

    Article  CAS  PubMed  Google Scholar 

  27. Hsieh S, Chang C, Chou H (2013) Gold nanoparticles as amyloid-like fibrillogenesis inhibitors. Colloids Surf B Biointerfaces 112:525–529

    Article  CAS  PubMed  Google Scholar 

  28. Dubey K et al (2015) Tyrosine- and tryptophan-coated gold nanoparticles inhibit amyloid aggregation of insulin. Amino Acids 47:2551–2560

    Article  CAS  PubMed  Google Scholar 

  29. Ai Tran HN et al (2010) A novel class of potential prion drugs: preliminary in vitro and in vivo data for multilayer coated gold nanoparticles. Nanoscale 2:2724–2732

    Article  PubMed  Google Scholar 

  30. Linse S et al (2007) Nucleation of protein fibrillation by nanoparticles. Proc Natl Acad Sci 104:8691–8696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cabaleiro-Lago C, Lynch I, Dawson KA, Linse S (2010) Inhibition of IAPP and IAPP(20-29) fibrillation by polymeric nanoparticles. Langmuir 26:3453–3461

    Article  CAS  PubMed  Google Scholar 

  32. Cabaleiro-Lago C, Quinlan-Pluck F, Lynch I, Dawson KA, Linse S (2010) Dual effect of amino modified polystyrene nanoparticles on amyloid β protein fibrillation. ACS Chem Nerosci 1:279–287

    Article  CAS  Google Scholar 

  33. Cabaleiro-Lago C et al (2008) Inhibition of amyloid beta protein fibrillation by polymeric nanoparticles. J Am Chem Soc 130:15437–15443

    Article  CAS  PubMed  Google Scholar 

  34. Gao N, Sun H, Dong K, Ren J, Qu X (2015) Gold-nanoparticle-based multifunctional amyloid-β inhibitor against Alzheimer’s disease. Chem A Eur J 21:829–835

    Article  CAS  Google Scholar 

  35. Liao Y-H, Chang Y-J, Yoshiike Y, Chang Y-C, Chen Y-R (2012) Negatively charged gold nanoparticles inhibit Alzheimer’s amyloid-β fibrillization, induce fibril dissociation, and mitigate neurotoxicity. Small 8:3631–3639

    Article  CAS  PubMed  Google Scholar 

  36. Pai AS, Rubinstein I, Önyüksel H (2006) PEGylated phospholipid nanomicelles interact with β-amyloid(1-42) and mitigate its β-sheet formation, aggregation and neurotoxicity in vitro. Peptides 27:2858–2866

    Article  CAS  PubMed  Google Scholar 

  37. Yoo S II et al (2011) Inhibition of amyloid peptide fibrillation by inorganic nanoparticles: functional similarities with proteins. Angew Chem Int Ed 50:5110–5115

    Article  CAS  Google Scholar 

  38. Wu W et al (2008) TiO2 nanoparticles promote β-amyloid fibrillation in vitro. Biochem Biophys Res Commun 373:315–318

    Article  CAS  PubMed  Google Scholar 

  39. Xiao L, Zhao D, Chan WH, Choi MMF, Li HW (2010) Inhibition of beta 1-40 amyloid fibrillation with N-acetyl-l-cysteine capped quantum dots. Biomaterials 31:91–98

    Article  CAS  PubMed  Google Scholar 

  40. Ikeda K, Okada T, Sawada SI, Akiyoshi K, Matsuzaki K (2006) Inhibition of the formation of amyloid β-protein fibrils using biocompatible nanogels as artificial chaperones. FEBS Lett 580:6587–6595

    Article  CAS  PubMed  Google Scholar 

  41. Mirsadeghi S, Shanehsazzadeh S, Atyabi F, Dinarvand R (2016) Effect of PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) under magnetic field on amyloid beta fibrillation process. Mater Sci Eng C 59:390–397

    Article  CAS  Google Scholar 

  42. Coronado EA, Encina ER, Stefani FD (2011) Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale. Nanoscale 3:4042–4059

    Article  CAS  PubMed  Google Scholar 

  43. Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668

    Article  CAS  PubMed  Google Scholar 

  44. Shukla R et al (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21:10644–10654

    Article  CAS  PubMed  Google Scholar 

  45. Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37:1896–1908

    Article  CAS  PubMed  Google Scholar 

  46. Murphy CJ et al (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730

    Article  CAS  PubMed  Google Scholar 

  47. Khlebtsov N, Dykman L (2011) Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev 40:1647–1671

    Article  CAS  PubMed  Google Scholar 

  48. Pham T, Jackson JB, Halas NJ, Lee TR (2002) Preparation and characterization of gold nanoshells coated with self-assembled monolayers. Langmuir 18:4915–4920

    Article  CAS  Google Scholar 

  49. Oldenburg S, Averitt R, Westcott S, Halas N (1998) Nanoengineering of optical resonances. Chem Phys Lett 288:243–247

    Article  CAS  Google Scholar 

  50. Lal S et al (2008) Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem Soc Rev 37:898

    Article  CAS  PubMed  Google Scholar 

  51. Myroshnychenko V et al (2008) Modeling the optical response of highly faceted metal nanoparticles with a fully 3D boundary element method. Adv Mater 20:4288–4293

    Article  CAS  Google Scholar 

  52. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2:681–693

    Article  CAS  PubMed  Google Scholar 

  53. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2:107–118

    Article  CAS  Google Scholar 

  54. Joh DY et al (2013) Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization. PLoS One 8:e62425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sonavane G, Tomoda K, Makino K (2008) Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B 66:274–280

    Article  CAS  Google Scholar 

  56. Prades R et al (2012) Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials 33:7194–7205

    Article  CAS  PubMed  Google Scholar 

  57. Kreibig U, Vollmer M (1995) Optical properties of metal clusters, vol 25. Springer, Berlin

    Google Scholar 

  58. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  59. Pellegrotti JV et al (2014) Controlled reduction of photobleaching in DNA origami-gold nanoparticle hybrids. Nano Lett 14:2831–2836

    Article  CAS  PubMed  Google Scholar 

  60. Gobin AM et al (2007) Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 7:1929–1934

    Article  CAS  PubMed  Google Scholar 

  61. Wu X et al (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46

    Article  CAS  PubMed  Google Scholar 

  62. Pissuwan D, Niidome T, Cortie MB (2011) The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release 149:65–71

    Article  CAS  PubMed  Google Scholar 

  63. Rotello VM (2007) Drug and gene delivery using gold nanoparticles. Drug Deliv 40–45. doi: 10.1007/s

    Google Scholar 

  64. Paasonen L et al (2007) Gold nanoparticles enable selective light-induced contents release from liposomes. J Control Release 122:86–93

    Article  CAS  PubMed  Google Scholar 

  65. Patil SD, Rhodes DG, Burgess DJ (2005) DNA-based therapeutics and DNA delivery systems: a comprehensive review. AAPS J 7:E61–E77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Han G, Martin CT, Rotello VM (2006) Stability of gold nanoparticle-bound DNA toward biological, physical, and chemical agents. Chem Biol Drug Des 67:78–82

    Article  CAS  PubMed  Google Scholar 

  67. Mayilo S et al (2009) Long-range fluorescence quenching by gold nanoparticles in a sandwich immunoassay for cardiac troponin T. Nano Lett 9:4558–4563

    Article  CAS  PubMed  Google Scholar 

  68. Chandrasekharan N, Kelly LA (2001) A dual fluorescence temperature sensor based on perylene/exciplex interconversion. J Am Chem Soc 123:9898–9899

    Article  CAS  PubMed  Google Scholar 

  69. Nath N, Chilkoti A (2002) A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem 74:504–509

    Article  CAS  PubMed  Google Scholar 

  70. Zijlstra P, Paulo PMR, Orrit M (2012) Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat Nanotechnol 7:379–382

    Article  CAS  PubMed  Google Scholar 

  71. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857

    Article  CAS  PubMed  Google Scholar 

  72. Lakhani PM, Rompicharla SVK, Ghosh B, Biswas S (2015) An overview of synthetic strategies and current applications of gold nanorods in cancer treatment. Nanotechnology 26:432001

    Article  PubMed  Google Scholar 

  73. Atwater HA, American S (2007) The promise of plasmonics. Sci Am 296:56–63

    Article  CAS  PubMed  Google Scholar 

  74. Taminiau TH, Stefani FD, van Hulst NF (2011) Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes. Nano Lett 11:1020–1024

    Article  CAS  PubMed  Google Scholar 

  75. Taminiau TH, Stefani FD, van Hulst NF (2008) Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna. Opt Express 16:10858

    Article  PubMed  Google Scholar 

  76. Busson MP, Rolly B, Stout B, Bonod N, Bidault S (2012) Accelerated single photon emission from dye molecule-driven nanoantennas assembled on DNA. Nat Commun 3:962

    Article  PubMed  Google Scholar 

  77. Acuna GP et al (2012) Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 338:506–510

    Article  CAS  PubMed  Google Scholar 

  78. Ye X et al (2012) Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano 6:2804–2817

    Article  CAS  PubMed  Google Scholar 

  79. Kimling J et al (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707

    Article  CAS  PubMed  Google Scholar 

  80. Martin MN, Basham JI, Chando P, Eah S-K (2010) Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly. Langmuir 26:7410–7417

    Article  CAS  PubMed  Google Scholar 

  81. Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 25:377–445

    Article  CAS  Google Scholar 

  82. Hohenester U, Trügler A (2012) MNPBEM—a Matlab toolbox for the simulation of plasmonic nanoparticles. Comput Phys Commun 183:370–381

    Article  CAS  Google Scholar 

  83. Klar T et al (1998) Surface-plasmon resonances in single metallic nanoparticles. Phys Rev Lett 80:4249–4252

    Article  CAS  Google Scholar 

  84. Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116:6755

    Article  CAS  Google Scholar 

  85. Hermanson GT (2008) Bioconjugate techniques. Elsevier, Amsterdam

    Google Scholar 

  86. Yushchenko DA, Fauerbach JA, Thirunavukkuarasu S, Jares-erijman EA, Jovin TM (2010) Fluorescent ratiometric MFC probe sensitive to early stages of alpha-synuclein aggregation. J Am Chem Soc 132:7860–7861

    Article  CAS  PubMed  Google Scholar 

  87. Giehm L, Otzen DE (2010) Strategies to increase the reproducibility of protein fibrillization in plate reader assays. Anal Biochem 400:270–281

    Article  CAS  PubMed  Google Scholar 

  88. Giehm L, Lorenzen N, Otzen DE (2011) Assays for α-synuclein aggregation. Methods 53:295–305

    Article  CAS  PubMed  Google Scholar 

  89. LeVine HI (1999) Quantification of beta-sheet amyloid fibril structures with thioflavin T. Methods Enzymol 309:274–284

    Article  CAS  PubMed  Google Scholar 

  90. Hung SC, Ju J, Mathies RA, Glazer AN (1996) Energy transfer primers with 5- or 6-carboxyrhodamine-6G as acceptor chromophores. Anal Biochem 238:165–170

    Article  CAS  PubMed  Google Scholar 

  91. Metzker ML, Lu J, Gibbs RA (1996) Electrophoretically uniform fluorescent dyes for automated DNA sequencing. Science 271:1420–1422

    Article  CAS  PubMed  Google Scholar 

  92. Koike H, Yusa T, McCormick DB, Wright LD (1970) Vitamins and coenzymes. Methods enzymology, vol 18, Elsevier, Amsterdam

    Google Scholar 

  93. Davis WC (1995) Monoclonal antibody protocols, vol 45. Humana Press, Totowa, NJ

    Book  Google Scholar 

  94. Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando D. Stefani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Álvarez, Y.D., Pellegrotti, J.V., Stefani, F.D. (2018). Gold Nanoparticles as Nucleation Centers for Amyloid Fibrillation. In: Santamaria, F., Peralta, X. (eds) Use of Nanoparticles in Neuroscience. Neuromethods, vol 135. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7584-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7584-6_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7582-2

  • Online ISBN: 978-1-4939-7584-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics