Advertisement

A Static Microfluidic Device for Investigating the Chemotaxis Response to Stable, Non-linear Gradients

  • Nitesh Sule
  • Daniel Penarete-Acosta
  • Derek L. Englert
  • Arul Jayaraman
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1729)

Abstract

Microfluidic technology allows fast and precise measurement of chemotaxis responses to both attractant and repellent signals. One of the major drawbacks of current microfluidic chemotaxis assays is the presence of bacterial cells within the concentration gradient flow field, which has the potential for flow effects masking the chemotaxis response. This chapter describes a new microfluidic device for producing stable concentration gradients and measuring the response of cells to the gradient without exposing them to any flow. Unlike other methods described in the literature, this method is capable of producing gradients of any shape, almost instantaneously, allowing the measurement of time-dependent response of cells to a variety of signals.

Keywords

Chemotaxis Behavioral assay Microfluidic device 

Notes

Acknowledgment

The authors would like to acknowledge partial support from the Ray B. Nesbitt Endowed Chair.

References

  1. 1.
    Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5:1024–1037CrossRefGoogle Scholar
  2. 2.
    Englert DL, Jayaraman A, Manson MD (2009) Microfluidic techniques for the analysis of bacterial chemotaxis. Methods Mol Biol 571:1–23CrossRefGoogle Scholar
  3. 3.
    Adler J (1973) A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J Gen Microbiol 74:77–91CrossRefGoogle Scholar
  4. 4.
    Grimm AC, Harwood CS (1997) Chemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene. Appl Environ Microbiol 63:4111–4115PubMedPubMedCentralGoogle Scholar
  5. 5.
    HS Y, Alam M (1997) An agarose-in-plug bridge method to study chemotaxis in the Archaeon Halobacterium salinarum. FEMS Microbiol Lett 156:265–269CrossRefGoogle Scholar
  6. 6.
    Ahmed T, Shimizu TS, Stocker R (2010) Microfluidics for bacterial chemotaxis. Integr Biol (Camb) 2:604–629CrossRefGoogle Scholar
  7. 7.
    Mao H, Cremer PS, Manson MD (2003) A sensitive, versatile microfluidic assay for bacterial chemotaxis. Proc Natl Acad Sci U S A 100:5449–5454CrossRefGoogle Scholar
  8. 8.
    Jeon NL, Dertinger SKW, Chiu DT, Choi IS, Stroock AD et al (2000) Generation of solution and surface gradients using microfluidic systems. Langmuir 16:8311–8316CrossRefGoogle Scholar
  9. 9.
    Pasupuleti S, Sule N, Cohn WB, Mackenzie DS, Jayaraman A et al (2014) Chemotaxis of Escherichia coli to norepinephrine (NE) requires conversion of NE to 3,4-dihydroxymandelic acid. J Bacteriol 196:3992–4000CrossRefGoogle Scholar
  10. 10.
    Englert DL, Manson MD, Jayaraman A (2009) Flow-based microfluidic device for quantifying bacterial chemotaxis in stable, competing gradients. Appl Environ Microbiol 75:4557–4564CrossRefGoogle Scholar
  11. 11.
    Wolfram CJ, Rubloff GW, Luo X (2016) Perspectives in flow-based microfluidic gradient generators for characterizing bacterial chemotaxis. Biomicrofluidics 10(6):061301CrossRefGoogle Scholar
  12. 12.
    Diao J, Young L, Kim S, Fogarty EA, Heilman SM et al (2006) A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis. Lab Chip 6:381–388CrossRefGoogle Scholar
  13. 13.
    Cheng S-Y, Heilman S, Wasserman M, Archer S, Shuler ML et al (2007) A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip 7:763–769CrossRefGoogle Scholar
  14. 14.
    Ahmed T, Shimizu TS, Stocker R (2010) Bacterial chemotaxis in linear and nonlinear steady microfluidic gradients. Nano Lett 10:3379–3385CrossRefGoogle Scholar
  15. 15.
    Parkinson JS, Houts SE (1982) Isolation and behavior of Escherichia coli deletion mutants lacking chemotaxis functions. J Bacteriol 151:106–113PubMedPubMedCentralGoogle Scholar
  16. 16.
    Hansen MC, Palmer RJ Jr, Udsen C, White DC, Molin S (2001) Assessment of GFP fluorescence in cells of Streptococcus gordonii under conditions of low pH and low oxygen concentration. Microbiology 147:1383–1391CrossRefGoogle Scholar
  17. 17.
    Aran K, Sasso LA, Kamdar N et al (2010) Irreversible, direct bonding of nanoporous polymer membranes to PDMS or glass microdevices. Lab Chip 10:548–552CrossRefGoogle Scholar
  18. 18.
    Sip CG, Folch A (2014) Stable chemical bonding of porous membranes and poly(dimethylsiloxane) devices for long-term cell culture. Biomicrofluidics 8(3):036504CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Nitesh Sule
    • 1
  • Daniel Penarete-Acosta
    • 1
  • Derek L. Englert
    • 2
  • Arul Jayaraman
    • 1
  1. 1.Artie McFerrin Department of Chemical EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Department of Chemical and Materials EngineeringUniversity of KentuckyPaducahUSA

Personalised recommendations