Quantification of Bacterial Chemotaxis Responses at the Mouths of Hydrogel Capillaries

  • Benjamin A. Webb
  • Timofey D. Arapov
  • Birgit E. Scharf
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1729)

Abstract

Many chemotaxis assays allow for the assessment of bacterial chemotaxis by determining the number of cells migrating toward a chemoattractant or away from a chemorepellent. Some of these assays use a capillary filled with a chemoeffector/agarose mixture to allow cells to accumulate at the mouth of the capillary. Subsequently, assumptions about the relative strengths of chemotaxis strength are based on visual comparisons. Here, we describe a modification of this assay that uses a hydrogel matrix to enable quantitative time-course measurements by analyzing image pixel intensities. This approach allows a high-throughput method when coupled with the aid of a motorized microscope stage.

Keywords

Hydrogel capillary Alignment ImageJ Motorized stage PEG-DA Pixel intensity Quantitative measurement 

Notes

Acknowledgments

This study was supported by National Science Foundation grant MCB-1253234. We are indebted to Bahareh Behkam for sharing the Zeiss Axio Observer Research microscope and the Omnicure S1000 UV light source, and to Aziz Mahama Traore for training in hydrogel capillary fabrication.

References

  1. 1.
    Pfeffer W (1883) Locomotorische Richtungsbewegungen durch chemische Reize. Ber Deut Botan Ges 1:524–533Google Scholar
  2. 2.
    Bainer R, Park H, Cluzel P (2003) A high-throughput capillary assay for bacterial chemotaxis. J Microbiol Methods 55:315–319CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Adler J (1973) A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J Gen Microbiol 74:77–91CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Grimm AC, Harwood CS (1997) Chemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene. Appl Environ Microbiol 64:4111–4115Google Scholar
  5. 5.
    Nikata T, Sumida K, Kato J, Ohtake H (1992) Rapid method for analyzing bacterial behavioral responses to chemical stimuli. Appl Environ Microbiol 58:2250–2254PubMedPubMedCentralGoogle Scholar
  6. 6.
    Webb BA, Hildreth S, Helm RF, Scharf BE (2014) Sinorhizobium meliloti chemoreceptor McpU mediates chemotaxis toward host plant exudates through direct proline sensing. Appl Environ Microbiol 80:3404–3415CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    HS Y, Alam M (1997) An agarose-in-plug bridge method to study chemotaxis in the Archaeon Halobacterium salinarum. FEMS Microbiol Lett 156:265–269CrossRefGoogle Scholar
  8. 8.
    Peppas NA, Bures P, Lepobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46CrossRefPubMedGoogle Scholar
  9. 9.
    Cheng SY, Heilman S, Wasserman M, Archer S, Shuler ML et al (2007) A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip 7:763–769CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Revzin A, Russell RJ, Yadavalli VK, Koh WG, Deister C et al (2001) Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography. Langmuir 17:5440–5447CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Benjamin A. Webb
    • 1
  • Timofey D. Arapov
    • 1
  • Birgit E. Scharf
    • 1
  1. 1.Department of Biological SciencesVirginia TechBlacksburgUSA

Personalised recommendations