Advertisement

Identification of Specific Ligands for Sensory Receptors by Small-Molecule Ligand Arrays and Surface Plasmon Resonance

  • Christopher J. Day
  • Victoria Korolik
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1729)

Abstract

Ligand–receptor interactions triggering signal transduction components of many sensory pathways, remain elusive due to paucity of high-throughput screening methods. Here we describe our use of small molecule microarrays comprising of small glycans, amino and organic acids, salts, and other known chemoeffectors, for screening of ligands specific to various sensory receptors, followed by surface plasmon resonance to verify the veracity and to determine the affinity constants of the interactions. This methodology allows for rapid and identification of the direct ligand binding between the sensory receptors and their specific ligands.

Keywords

Amino acids Salts of organic acids High-throughput screening Methyl-accepting chemotaxis proteins Transducer-like proteins 

References

  1. 1.
    Melton T, Hartman PE, Stratis JP, Lee TL, Davis AT (1978) Chemotaxis of Salmonella typhimurium to amino acids and some sugars. J Bacteriol 133:708–716PubMedPubMedCentralGoogle Scholar
  2. 2.
    Mesibov R, Adler J (1972) Chemotaxis toward amino acids in Escherichia coli. J Bacteriol 112:315–326PubMedPubMedCentralGoogle Scholar
  3. 3.
    Schmidt J, Müsken M, Becker T, Magnowska Z, Bertinetti D et al (2011) The Pseudomonas aeruginosa chemotaxis methyltransferase CheR1 impacts on bacterial surface sampling. PLoS One 6:e18184CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Tareen AM, Dasti JI, Zautner AE, Gross U, Lugert R (2010) Campylobacter jejuni proteins Cj0952c and Cj0951c affect chemotactic behaviour towards formic acid and are important for invasion of host cells. Microbiology 156(Pt 10):3123–3135CrossRefPubMedGoogle Scholar
  5. 5.
    Mowbray SL, Koshland DE Jr (1987) Additive and independent responses in a single receptor: aspartate and maltose stimuli on the Tar protein. Cell 50:171–180CrossRefPubMedGoogle Scholar
  6. 6.
    Hartley-Tassell LE, Shewell LK, Day CJ, Wilson JC, Sandhu R et al (2010) Identification and characterization of the aspartate chemosensory receptor of Campylobacter jejuni. Mol Microbiol 75:710–730CrossRefPubMedGoogle Scholar
  7. 7.
    Rahman H, King RM, Shewell LK, Semchenko EA, Hartley-Tassell LE et al (2014) Characterisation of a multi-ligand binding chemoreceptor CcmL (Tlp3) of Campylobacter jejuni. PLoS Pathog 10:e1003822CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Day CJ, King RM, Shewell LK, Tram G, Najnin T et al (2016) A direct-sensing galactose chemoreceptor recently evolved in invasive strains of Campylobacter jejuni. Nat Commun 7:13206CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Waespy M, Gbem TT, Elenschneider L, Jeck AP, Day CJ (2015) Carbohydrate recognition specificity of trans-sialidase lectin domain from Trypanosoma congolense. PLoS Negl Trop Dis 9:e0004120. Erratum in: PLos Negl Trop Dis 9:e0004344CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Day CJ, Tiralongo J, Hartnell RD, Logue CA, Wilson JC et al (2009) Differential carbohydrate recognition by Campylobacter jejuni strain 11168: influences of temperature and growth conditions. PLoS One 4:e4927CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Institute for GlycomicsGriffith UniversitySouthportAustralia

Personalised recommendations