Chemotaxis to Atypical Chemoattractants by Soil Bacteria

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1729)

Abstract

Although the mechanism of bacterial chemotaxis has been extensively studied in enteric bacteria, the hunt for novel and atypical chemoeffectors (in enterics and distantly-related species alike) has necessitated the modification of classic chemotaxis assays to deal with recalcitrant and potentially toxic chemicals. Here, we describe detailed protocols for the quantitative and qualitative assessment of chemotaxis responses that are categorized into short-term direct population response assays and long-term metabolism-based assays that can be used to identify novel chemoeffector molecules and the specific chemoreceptors involved. We emphasize the importance of behavior-based assays to verify the biochemical and physiological relevance of newly identified chemoeffector-receptor pairs.

Keywords

Chemotaxis Energy taxis Signal transduction Chemoreceptor Attractant Chemoeffector Methyl-accepting chemotaxis protein 

Notes

Acknowledgment

Chemotaxis research in the authors’ laboratories has been supported by a grant from the National Science Foundation (MCB 0919930). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

References

  1. 1.
    Matilla MA, Krell T (2017) Chemoreceptor-based signal sensing. Curr Opin Biotechnol 45:8–14CrossRefGoogle Scholar
  2. 2.
    Krell T, Lacal J, Munoz-Martinez F, Reyes-Darias JA, Cadirci BH et al (2011) Diversity at its best: bacterial taxis. Environ Microbiol 13:1115–1124CrossRefGoogle Scholar
  3. 3.
    Wuichet K, Zhulin IB (2010) Origins and diversification of a complex signal transduction system in prokaryotes. Sci Signal 3:ra50CrossRefGoogle Scholar
  4. 4.
    Gibson DT, Koch JR, Kallio RE (1968) Oxidative degradation of aromatic hydrocarbons by microorganisms I. Enzymatic formation of catechol from benzene. Biochemistry 7:2653–2661CrossRefGoogle Scholar
  5. 5.
    Parales RE, Luu RA, Chen GY, Liu X, Wu V et al (2013) Pseudomonas putida F1 has multiple chemoreceptors with overlapping specificity for organic acids. Microbiology 159:1086–1096CrossRefGoogle Scholar
  6. 6.
    Gordillo F, Chávez FP, Jerez CA (2007) Motility and chemotaxis of Pseudomonas sp. B4 towards polychlorobiphenyls and chlorobenzoates. FEMS Microbiol Ecol 60:322–328CrossRefGoogle Scholar
  7. 7.
    Grimm AC, Harwood CS (1997) Chemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene. Appl Environ Microbiol 63:4111–4115PubMedPubMedCentralGoogle Scholar
  8. 8.
    Luu RA, Schneider BJ, Ho CC, Nesteryuk V, Ngwesse SE et al (2013) Taxis of Pseudomonas putida F1 toward phenylacetic acid is mediated by the energy taxis receptor Aer2. Appl Environ Microbiol 79:2416–2423CrossRefGoogle Scholar
  9. 9.
    Luu RA, Kootstra JD, Nesteryuk V, Brunton C, Parales JV et al (2015) Integration of chemotaxis, transport and catabolism in Pseudomonas putida and identification of the aromatic acid chemoreceptor PcaY. Mol Microbiol 96:134–147CrossRefGoogle Scholar
  10. 10.
    Parales RE, Ditty JL, Harwood CS (2000) Toluene-degrading bacteria are chemotactic to the environmental pollutants benzene, toluene, and trichloroethylene. Appl Environ Microbiol 66:4098–4104CrossRefGoogle Scholar
  11. 11.
    Lacal J, Reyes-Darias JA, Garcia-Fontana C, Ramos JL, Krell T (2013) Tactic responses to pollutants and their potential to increase biodegradation efficiency. J Appl Microbiol 114:923–933CrossRefGoogle Scholar
  12. 12.
    Paul D, Singh R, Jain RK (2006) Chemotaxis of Ralstonia sp. SJ98 towards p-nitrophenol in soil. Environ Microbiol 8:1797–1804CrossRefGoogle Scholar
  13. 13.
    Lacal J, Alfonso C, Liu X, Parales RE, Morel B et al (2010) Identification of a chemoreceptor for tricarboxylic acid cycle intermediates: differential chemotactic response towards receptor ligands. J Biol Chem 285:23126–23136CrossRefGoogle Scholar
  14. 14.
    Bi S, Yu D, Si G, Luo C, Li T et al (2013) Discovery of novel chemoeffectors and rational design of Escherichia coli chemoreceptor specificity. Proc Natl Acad Sci U S A 110:16814–16819CrossRefGoogle Scholar
  15. 15.
    Ni B, Huang Z, Fan Z, Jiang CY, Liu SJ (2013) Comamonas testosteroni uses a chemoreceptor for tricarboxylic acid cycle intermediates to trigger chemotactic responses towards aromatic compounds. Mol Microbiol 90:813–823CrossRefGoogle Scholar
  16. 16.
    Rabinovitch-Deere CA, Parales RE (2012) Three types of taxis used in the response of Acidovorax sp. strain JS42 to 2-nitrotoluene. Appl Environ Microbiol 78:2308–2315CrossRefGoogle Scholar
  17. 17.
    Grimm AC, Harwood CS (1999) NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. J Bacteriol 181:3310–3316PubMedPubMedCentralGoogle Scholar
  18. 18.
    Hawkins AC, Harwood CS (2002) Chemotaxis of Ralstonia eutropha JMP134(pJP4) to the herbicide 2,4-dichlorophenoxyacetate. Appl Environ Microbiol 68:968–972CrossRefGoogle Scholar
  19. 19.
    Vangnai AS, Takeuchi K, Oku S, Kataoka N, Nitisakulkan T et al (2013) Identification of CtpL as a chromosomally encoded chemoreceptor for 4-chloroaniline and catechol in Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 79:7241–7248CrossRefGoogle Scholar
  20. 20.
    López-Farfán D, Reyes-Darias JA, Krell T (2016) The expression of many chemoreceptor genes depends on the cognate chemoeffector as well as on the growth medium and phase. Curr Genet 63:457–470CrossRefGoogle Scholar
  21. 21.
    Alexandre G (2010) Coupling metabolism and chemotaxis-dependent behaviours by energy taxis receptors. Microbiology 156:2283–2293CrossRefGoogle Scholar
  22. 22.
    Sarand I, Osterberg S, Holmqvist S, Holmfeldt P, Skarfstad E et al (2008) Metabolism-dependent taxis towards (methyl)phenols is coupled through the most abundant of three polar localized Aer-like proteins of Pseudomonas putida. Environ Microbiol 10:1320–1334CrossRefGoogle Scholar
  23. 23.
    Sambrook J, Fritch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  24. 24.
    Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271CrossRefGoogle Scholar
  25. 25.
    Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) (1994) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, D.C.Google Scholar
  26. 26.
    HS Y, Alam M (1997) An agarose-in-plug bridge method to study chemotaxis in the archaeon Halobacterium salinarum. FEMS Microbiol Lett 156:265–269Google Scholar
  27. 27.
    Tso W-W, Adler J (1974) Negative chemotaxis in Escherichia coli. J Bacteriol 118:560–576Google Scholar
  28. 28.
    Storch KF, Rudolph J, Oesterhelt D (1999) Car: a cytoplasmic sensor responsible for arginine chemotaxis in the archaeon Halobacterium salinarum. EMBO J 18:1146–1158CrossRefGoogle Scholar
  29. 29.
    Li J, Go AC, Ward MJ, Ottemann KM (2010) The chemical-in-plug bacterial chemotaxis assay is prone to false positive responses. BMC Res Notes 3:77CrossRefGoogle Scholar
  30. 30.
    Nikata T, Sumida K, Kato J, Ohtake H (1992) Rapid method for analyzing bacteria behavioral responses to chemical stimuli. Appl Environ Microbiol 58:2250–2254PubMedPubMedCentralGoogle Scholar
  31. 31.
    Kato J, Ito A, Nikata T, Ohtake H (1992) Phosphate taxis in Pseudomonas aeruginosa. J Bacteriol 174:5149–5151CrossRefGoogle Scholar
  32. 32.
    Lacal J, Muñoz-Martínez F, Reyes-Darías JA, Duque E, Matilla M et al (2011) Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas. Environ Microbiol 13:1733–1744CrossRefGoogle Scholar
  33. 33.
    Adler J (1973) A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J Gen Microbiol 74:77–91CrossRefGoogle Scholar
  34. 34.
    Harwood CS, Rivelli M, Ornston LN (1984) Aromatic acids are chemoattractants for Pseudomonas putida. J Bacteriol 160:622–628PubMedPubMedCentralGoogle Scholar
  35. 35.
    Webb BA, Compton KK, Castañeda Saldaña R, Arapov TD, Ray KW et al (2017) Sinorhizobium meliloti chemotaxis to quaternary ammonium compounds is mediated by the chemoreceptor McpX. Mol Microbiol 103:333–346CrossRefGoogle Scholar
  36. 36.
    Mesibov R, Adler J (1972) Chemotaxis toward amino acids in Escherichia coli. J Bacteriol 112:315–326PubMedPubMedCentralGoogle Scholar
  37. 37.
    Adler J (1966) Chemotaxis in bacteria. Science 153:708–716CrossRefGoogle Scholar
  38. 38.
    Alvarez-Ortega C, Harwood CS (2007) Identification of a malate chemoreceptor in Pseudomonas aeruginosa by screening for chemotaxis defects in an energy taxis-deficient mutant. Appl Environ Microbiol 73:7793–7795CrossRefGoogle Scholar
  39. 39.
    Pham HT, Parkinson JS (2011) Phenol sensing by Escherichia coli chemoreceptors: a nonclassical mechanism. J Bacteriol 193:6597–6604CrossRefGoogle Scholar
  40. 40.
    Moulton RC, Montie TC (1979) Chemotaxis by Pseudomonas aeruginosa. J Bacteriol 137:274–280PubMedPubMedCentralGoogle Scholar
  41. 41.
    Moench TT, Konetzka WA (1978) Chemotaxis in Pseudomonas aeruginosa. J Bacteriol 133:427–429PubMedPubMedCentralGoogle Scholar
  42. 42.
    Parkinson JS (2007) A "bucket of light" for viewing bacterial colonies in soft agar. Methods Enzymol 423:432–435CrossRefGoogle Scholar
  43. 43.
    Meyer G, Schneider-Merck T, Böhme S, Sand W (2002) A simple method for investigations on the chemotaxis of Acidithiobacillis ferrooxidans and Desulfovibrio vulgaris. Acta Biotechnol 22:391–399CrossRefGoogle Scholar
  44. 44.
    Kearns DB (2010) A field guide to bacterial swarming motility. Nat Rev Microbiol 8:634–644CrossRefGoogle Scholar
  45. 45.
    Khan S, Gaines J, Roop RM, Farrand SK (2008) Broad-host-range expression vectors with tightly regulated promoters and their use to examine the influence of TraR and TraM expression on Ti plasmid quorum sensing. Appl Environ Microbiol 74:5053–5062CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Department of Microbiology and Molecular Genetics, College of Biological SciencesUniversity of CaliforniaDavisUSA
  2. 2.Department of Biology, College of Arts and SciencesUniversity of St. ThomasSt. PaulUSA

Personalised recommendations