Transmembrane Signal Transduction in Bacterial Chemosensing

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1729)

Abstract

Like all living organisms, bacteria must communicate with the world around them. As they typically live as single cells, the communication with their environment must occur at the cell membrane, both in moving molecules in and out and in transmitting information about their surroundings to response elements within the cell. This volume is devoted primarily to methods used to study either the behavior of bacteria in response to their environment or methods used to study events that involve signaling pathways that are initiated by events at the cell membrane. The topics are arranged according to the scale of the events described: (1) Methods for studying bacterial chemotaxis at the population and whole-cell levels; (2) In vivo analysis of receptor function; (3) Cryo-EM methods for studying chemoreceptor structure; (4) Monitoring the intracellular movement of chemosensory proteins; (5) High-throughput methods for screening novel chemoeffectors; (6) Creating chemical tools for studying chemosensory signal transduction; (7) Computerized analysis of chemotaxis. Every effort has been made to get the most experienced and proficient practitioners of each of the methods described, and the editor is indebted to all who agreed to participate.

Keywords

Bacterial behavior Chemoeffectors Chemoreceptors Tracking cells and molecules Chemical tools Bioinformatics Molecular dynamics 

Notes

Acknowledgments

I especially want to thank John S. (Sandy) Parkinson for his contribution of two chapters, his encouragement, his organization of the annual ReceptorFest, and his co-authoring, with Gerald (Jerry) Hazelbauer and Joseph (Joe) Falke the two review articles that provide the best and most-comprehensive discussion of the signaling pathways associated with bacterial chemotaxis.

References

  1. 1.
    Krisko A, Radman M (2013) Biology of extreme radiation resistance: the way of Deinococcus radiodurans. Cold Spring Harb Perspect Biol 5:piia 012765CrossRefGoogle Scholar
  2. 2.
    Dubos RJ (1960) Louis Pasteur: free lance of science. Charles Scribner’s Sons, New York, NYGoogle Scholar
  3. 3.
    Singh S, Eldin C, Kowalczewska M, Raoult D (2013) Axenic culture of fastidious and intracellular bacteria. Trends Microbiol 21:92–99CrossRefGoogle Scholar
  4. 4.
    Schloter M, Lebuhn M, Heulin T, Hartmann A (2000) Ecology and evolution of bacterial microdiversity. FEMS Microbiol Rev 24:647–660CrossRefGoogle Scholar
  5. 5.
    Logares R, Bråte J, Bertilsson S, Clasen JL, Shalchian-Tabrizi K et al (2009) Infrequent marine-freshwater transitions in the microbial world. Trends Microbiol 17:414–422CrossRefGoogle Scholar
  6. 6.
    Zeeuwen PL, Kleerebezem M, Timmerman HM, Schalkwijk J (2013) Microbiome and skin diseases. Curr Opin Allergy Clin Immunol 13:514–520CrossRefGoogle Scholar
  7. 7.
    Cresci GA, Bawden E (2015) Gut microbiome: what we do and don't know. Nutr Clin Pract 30:734–746CrossRefGoogle Scholar
  8. 8.
    Whiteside SA, Razvi H, Dave S, Reid G, Burton JP (2015) The microbiome of the urinary tract–a role beyond infection. Nat Rev Urol 12:81–90CrossRefGoogle Scholar
  9. 9.
    Jung K, Fried L, Behr S, Heermann R (2012) Histidine kinases and response regulators in networks. Curr Opin Microbiol 15:118–124CrossRefGoogle Scholar
  10. 10.
    Hoch JA, Silhavy TJ (1995) Two-component signal transduction. ASM Press, Washington, DCGoogle Scholar
  11. 11.
    Stewart V (1993) Nitrate regulation of anaerobic respiratory gene expression in Escherichia coli. Mol Microbiol 9:425–434CrossRefGoogle Scholar
  12. 12.
    Zientz E, Bongaerts J, Unden G (1998) Fumarate regulation of gene expression in Escherichia coli by the DcuSR (dcuSR genes) two-component regulatory system. J Bacteriol 180:5421–5425Google Scholar
  13. 13.
    Cheung J, Hendrickson WA (2009) Structural analysis of ligand stimulation of the histidine kinase NarX. Structure 17:190–201CrossRefGoogle Scholar
  14. 14.
    Ward SM, Delgado A, Gunsalus RP, Manson MD (2002) A NarX-Tar chimera mediates repellent chemotaxis to nitrate and nitrite. Mol Microbiol 44:709–719CrossRefGoogle Scholar
  15. 15.
    Ward SM, Bormans AF, Manson MD (2006) Mutationally altered signal output in the Nart (NarX-Tar) hybrid chemoreceptor. J Bacteriol 188:3944–3951CrossRefGoogle Scholar
  16. 16.
    Wuichet K, Cantwell BJ, Zhulin IB (2010) Evolution and phyletic distribution of two-component signal transduction systems. Curr Opin Microbiol 13:219–225CrossRefGoogle Scholar
  17. 17.
    Purcell EM (1977) Life at low Reynolds number. Am J Phys 45:3–11CrossRefGoogle Scholar
  18. 18.
    Larsen SH, Reader RW, Kort EN, Tso WW, Adler J (1974) Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature 249:74–77CrossRefGoogle Scholar
  19. 19.
    Brown DA, Berg HC (1974) Temporal stimulation of chemotaxis in Escherichia coli. Proc Natl Acad Sci U S A 71:1388–1392CrossRefGoogle Scholar
  20. 20.
    Miller LD, Russell MH, Alexandre G (2009) Diversity in bacterial chemotactic responses and niche adaptation. Adv Appl Microbiol 66:53–75CrossRefGoogle Scholar
  21. 21.
    Krell T, Lacal J, Muñoz-Martínez F, Reyes-Darias JA, Cadirci BH et al (2011) Diversity at its best: bacterial taxis. Environ Microbiol 13:1115–1124CrossRefGoogle Scholar
  22. 22.
    Hegde M, Englert DL, Schrock S, Cohn WB, Vogt C et al (2011) Chemotaxis to the quorum-sensing signal AI-2 requires the Tsr chemoreceptor and the periplasmic LsrB AI-2-binding protein. J Bacteriol 193:768–773CrossRefGoogle Scholar
  23. 23.
    Pasupuleti S, Sule N, Cohn WB, MacKenzie DS, Jayaraman A et al (2014) Chemotaxis of Escherichia coli to norepinephrine (NE) requires conversion of NE to 3,4-dihydroxymandelic acid. J Bacteriol 196:3992–4000CrossRefGoogle Scholar
  24. 24.
    Rebbapragada A, Johnson MS, Harding GP, Zuccarelli AJ, Fletcher HM et al (1997) The Aer protein and the serine chemoreceptor Tsr independently sense intracellular energy levels and transduce oxygen, redox, and energy signals for Escherichia coli behavior. Proc Natl Acad Sci U S A 94:10541–10546CrossRefGoogle Scholar
  25. 25.
    Bibikov SI, Biran R, Rudd KE, Parkinson JS (1997) A signal transducer for aerotaxis in Escherichia coli. J Bacteriol 179:4075–4079CrossRefGoogle Scholar
  26. 26.
    Li G, Weis RM (2000) Covalent modification regulates ligand binding to receptor complexes in the chemosensory system of Escherichia coli. Cell 100:357–365CrossRefGoogle Scholar
  27. 27.
    Cluzel P, Surette M, Leibler S (2000) An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 287:1652–1655CrossRefGoogle Scholar
  28. 28.
    Tu Y (2013) Quantitative modeling of bacterial chemotaxis: signal amplification and accurate adaptation. Annu Rev Biophys 42:337–359CrossRefGoogle Scholar
  29. 29.
    Briegel A, Ortega DR, Huang AN, Oikonomou CM, Gunsalus RP et al (2015) Structural conservation of chemotaxis machinery across Archaea and bacteria. Environ Microbiol Rep 7:414–419CrossRefGoogle Scholar
  30. 30.
    Hazelbauer GL, Falke JJ, Parkinson JS (2008) Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci 33:9–19CrossRefGoogle Scholar
  31. 31.
    Parkinson JS, Hazelbauer GL, Falke JJ (2015) Signaling and sensory adaptation in Escherichia colichemoreceptors: 2015 update. Trends Microbiol 23:257–266CrossRefGoogle Scholar
  32. 32.
    Sanders DA, Koshland DE Jr (1988) Receptor interactions through phosphorylation and methylation pathways in bacterial chemotaxis. Proc Natl Acad Sci U S A 85:8425–8429CrossRefGoogle Scholar
  33. 33.
    Kehry MR, Bond MW, Hunkapiller MW, Dahlquist FW (1983) Enzymatic deamidation of methyl-accepting chemotaxis proteins in Escherichia coli catalyzed by the cheB gene product. Proc Natl Acad Sci U S A 80:3599–3603CrossRefGoogle Scholar
  34. 34.
    Lai RZ, Parkinson JS (2014) Functional suppression of HAMP domain signaling defects in the E. coli serine chemoreceptor. J Mol Biol 426:3642–3655CrossRefGoogle Scholar
  35. 35.
    Berg HC, Purcell EM (1977) Physics of chemoreception. Biochem J 20:193–219Google Scholar
  36. 36.
    Maddock JR, Shapiro L (1993) Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259:1717–1723CrossRefGoogle Scholar
  37. 37.
    Briegel A, Ortega DR, Tocheva EI, Wuichet K, Li Z et al (2009) Universal architecture of bacterial chemoreceptor arrays. Proc Natl Acad Sci U S A 106:17181–17186CrossRefGoogle Scholar
  38. 38.
    Liu J, Hu B, Morado DR, Jani S, Manson MD et al (2012) Molecular architecture of chemoreceptor arrays revealed by cryoelectron tomography of Escherichia coli minicells. Proc Natl Acad Sci U S A 109:e1481–e1488CrossRefGoogle Scholar
  39. 39.
    Briegel A, Ladinsky MS, Oikonomou C, Jones CW, Harris MJ et al (2014) Structure of bacterial cytoplasmic chemoreceptor arrays and implications for chemotactic signaling. elife 3:e02151CrossRefGoogle Scholar
  40. 40.
    Shimizu TS, Aksenov SV, Bray D (2003) A spatially extended stochastic model of the bacterial chemotaxis signalling pathway. J Mol Biol 329:291–309CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Department of BiologyTexas A&M UniversityCollege StationUSA

Personalised recommendations