Advertisement

Use of Cryo-EM to Study the Structure of Chemoreceptor Arrays In Vivo

  • Wen Yang
  • Ariane Briegel
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1729)

Abstract

Cryo-electron microscopy (cryo-EM) allows the imaging of intact macromolecular complexes in the context of whole cells. The biological samples for cryo-EM are kept in a near-native state by flash freezing, without the need for any additional sample preparation or fixation steps. Since transmission electron microscopy only generates 2D projections of the samples, the specimen has to be tilted in order to recover its 3D structural information. This is done by collecting images of the sample with various tilt angles in respect to the electron beam. The acquired tilt series can then be computationally back-projected. This technique is called electron cryotomography (ECT), and has been instrumental in unraveling the architecture of chemoreceptor arrays. Here we describe the method of visualizing in vivo bacterial chemoreceptor arrays in three main steps: immobilization of bacterial cells on EM grids by plunge-freezing; 2D image acquisition in tilt series; and 3D tomogram reconstruction.

Keywords

Cryo-EM Cryotomography Plunge freezing Chemoreceptor arrays 

Notes

Acknowledgment

We thank Dr. Christoph Diebolder from NeCEN for helpful comments to improve the manuscript.

References

  1. 1.
    Gan L, Jensen GJ (2013) Electron tomography of cells. Q Rev Biophys 45:27–56CrossRefGoogle Scholar
  2. 2.
    Koning RI, Koster AJ (2009) Cryo-electron tomography in biology and medicine. Ann Anat 191:427–445CrossRefGoogle Scholar
  3. 3.
    Zhang P, Khursigara CM, Hartnell LM, Subramaniam S (2007) Direct visualization of Escherichia coli chemotaxis receptor arrays using cryo-electron microscopy. Proc Natl Acad Sci U S A 104:3777–3781CrossRefGoogle Scholar
  4. 4.
    Briegel A, Ding HJ, Li Z, Werner J, Gitai Z, Dias DP et al (2008) Location and architecture of the Caulobacter crescentus chemoreceptor array. Mol Microbiol 69:30–41CrossRefGoogle Scholar
  5. 5.
    Briegel A, Li X, Bilwes AM, Hughes KT, Jensen GJ et al (2012) Bacterial chemoreceptor arrays are hexagonally packed trimers of receptor dimers networked by rings of kinase and coupling proteins. Proc Natl Acad Sci U S A 109:3766–3771CrossRefGoogle Scholar
  6. 6.
    Liu J, Hu B, Morado DR, Jani S, Manson MD et al (2012) Molecular architecture of chemoreceptor arrays revealed by cryoelectron tomography of Escherichia coli minicells. Proc Natl Acad Science U S A 109:e1481–e1488CrossRefGoogle Scholar
  7. 7.
    Briegel A, Ames P, Gumbart JC, Oikonomou CM, Parkinson JS et al (2013) The mobility of two kinase domains in the Escherichia coli chemoreceptor array varies with signalling state. Mol Microbiol 89:831–841CrossRefGoogle Scholar
  8. 8.
    Cassidy CK, Himes BA, Alvarez FJ, Ma J, Zhao G, Perilla JR et al (2015) CryoEM and computer simulations reveal a novel kinase conformational switch in bacterial chemotaxis signaling. Elife 4:e08419CrossRefGoogle Scholar
  9. 9.
    Fernandez-Leiro R, Scheres SHW (2016) Unravelling biological macromolecules with cryo-electron microscopy. Nature 537:339–346CrossRefGoogle Scholar
  10. 10.
    Dubochet J, Adrian M, Chang J-J, Homo J-C, Lepault J et al (1988) Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21:129–228CrossRefGoogle Scholar
  11. 11.
    Tocheva EI, Li Z, Jensen GJ (2010) Electron cryotomography. Cold Spring Harb Perspect Biol 2:a003442CrossRefGoogle Scholar
  12. 12.
    Radermacher M, Wagenknecht T, Verschoor A, Frank J (1986) A new 3-D reconstruction scheme applied to the 50S ribosomal subunit of E. coli. J Microsc 141:RP1–RP2CrossRefGoogle Scholar
  13. 13.
    Grunewald K, Medalia O, Gross A, Steven AC, Baumeister W (2003) Prospects of electron cryotomography to visualize macromolecular complexes inside cellular compartments: implications of crowding. Biophys Chem 100:577–591CrossRefGoogle Scholar
  14. 14.
    Frank J (ed) (2006) Electron tomography. methods for three-dimensional visualization of structures in the cell, 2nd edn. Springer, New York, NYGoogle Scholar
  15. 15.
    Comolli LR, Downing KH (2005) Dose tolerance at helium and nitrogen temperatures for whole cell electron tomography. J Struct Biol 152:149–516CrossRefGoogle Scholar
  16. 16.
    Koster AJ, Grimm R, Typke D, Hegerl R, Stoschek A et al (1997) Perspectives of molecular and cellular electron tomography. J Struct Biol 120:276–308CrossRefGoogle Scholar
  17. 17.
    Diebolder CA, Koster AJ, Koning RI (2012) Pushing the resolution limits in cryo electron tomography of biological structures. J Microsc 248:1–5CrossRefGoogle Scholar
  18. 18.
    Lawrence MC (1992) Least-squares method of alignment using markers. In: Frank J (ed) Electron tomography: three-dimensional imaging with the transmission electron microscope. Springer, New York, NY, pp 197–204CrossRefGoogle Scholar
  19. 19.
    Penczek P, Radermacher M, Frank J (1992) Three-dimensional reconstruction of single particles embedded in ice. Ultramicroscopy 40:33–53CrossRefGoogle Scholar
  20. 20.
    Andersen AH, Kak AC (1984) Simultaneous algebraic reconstruction technique (SART): a superior implementation of the art algorithm. Ultrason Imaging 6:81–94CrossRefGoogle Scholar
  21. 21.
    Fernandez JJ, Li S, Crowther RA (2006) CTF determination and correction in electron cryotomography. Ultramicroscopy 106:587–596CrossRefGoogle Scholar
  22. 22.
    Xiong Q, Morphew MK, Schwartz CL, Hoenger AH, Mastronarde DN (2009) CTF determination and correction for low dose tomographic tilt series. J Struct Biol 168:378–387CrossRefGoogle Scholar
  23. 23.
    Walz J, Typke D, Nitsch M, Koster AJ, Hegerl R et al (1997) Electron tomography of single ice-embedded macromolecules: three-dimensional alignment and classification. J Struct Biol 120:387–395CrossRefGoogle Scholar
  24. 24.
    Nicastro D, Schwartz C, Pierson J, Gaudette R, Porter ME et al (2006) The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313:944–948CrossRefGoogle Scholar
  25. 25.
    Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76CrossRefGoogle Scholar
  26. 26.
    Mastronarde DN (2008) Correction for non-perpendicularity of beam and tilt axis in tomographic reconstructions with the IMOD package. J Microsc 230:212–217CrossRefGoogle Scholar
  27. 27.
    Grassucci RA, Taylor DJ, Frank J (2007) Preparation of macromolecular complexes for cryo-electron microscopy. Nat Protoc 2:3239–3246CrossRefGoogle Scholar
  28. 28.
    Dobro MJ, Melanson LA, Jensen GJ, McDowall AW (2010) Three-plunge freezing for electron cryomicroscopy. Methods Enzymol 481:63–82CrossRefGoogle Scholar
  29. 29.
    Briegel A, Wong mL, Hodges HL, Oikonomou CM, Piasta KN et al (2014) New insights into bacterial chemoreceptor array structure and assembly from electron cryotomography. Biochemistry 53:1575–1585CrossRefGoogle Scholar
  30. 30.
    Briegel A, Ladinsky MS, Oikonomou C, Jones CW, Harris MJ et al (2014) Structure of bacterial cytoplasmic chemoreceptor arrays and implications for chemotactic signaling. Elife 3:e02151CrossRefGoogle Scholar
  31. 31.
    Glaeser RM (2016) How good can cryo-EM become? Nat Methods 13:28–32CrossRefGoogle Scholar
  32. 32.
    Iancu CV, Tivol WF, Schooler JB, Dias DP, Henderson GP et al (2006) Electron cryotomography sample preparation using the Vitrobot. Nat Protoc 1:2813–2819CrossRefGoogle Scholar
  33. 33.
    Chen S, McDowall A, Dobro MJ, Briegel A, Ladinsky M et al (2010) Electron cryotomography of bacterial cells. J Vis Exp 39. pii:1943Google Scholar
  34. 34.
    Mastronarde DN (2005) Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152:36–51CrossRefGoogle Scholar
  35. 35.
    Nickell S, Forster F, Linaroudis A, Net WD, Beck F et al (2005) TOM software toolbox: acquisition and analysis for electron tomography. J Struct Biol 149:227–234CrossRefGoogle Scholar
  36. 36.
    Zheng SQ, Keszthelyi B, Branlund E, Lyle JM, Braunfeld MB et al (2007) UCSF tomography: an integrated software suite for real-time electron microscopic tomographic data collection, alignment, and reconstruction. J Struct Biol 157:138–147CrossRefGoogle Scholar
  37. 37.
    Frank J, Radermacher M, Penczek P, Zhu J, Li Y et al (1996) SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116:190–199CrossRefGoogle Scholar
  38. 38.
    Heymann JB, Cardone G, Winkler DC, Steven AC (2008) Computational resources for cryo-electron tomography in Bsoft. J Struct Biol 161:232–242CrossRefGoogle Scholar
  39. 39.
    Winkler H (2007) 3D reconstruction and processing of volumetric data in cryo-electron tomography. J Struct Biol 157:126–137CrossRefGoogle Scholar
  40. 40.
    Briegel A, Ortega DR, Tocheva EI, Wuichet K, Li Z et al (2009) Universal architecture of bacterial chemoreceptor arrays. Proc Natl Acad Sci U S A 106:17181–17186CrossRefGoogle Scholar
  41. 41.
    Fu X, Himes BA, Ke D, Rice WJ, Ning J et al (2014) Controlled bacterial lysis for electron tomography of native cell membranes. Structure 22:1875–1882CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Department of BiologyLeiden UniversityLeidenThe Netherlands

Personalised recommendations