Advertisement

FRET Analysis of the Chemotaxis Pathway Response

  • Anja Paulick
  • Victor Sourjik
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1729)

Abstract

Most motile bacteria follow spatial gradients of chemical and physical stimuli in their environment. In Escherichia coli and other bacteria, the best characterized chemotaxis is in gradients of amino acids or sugars, but other physiological stimuli such as pH, osmolarity, redox potentials, and temperature are also known to elicit tactic responses. These multiple environmental stimuli are integrated and processed within a highly sophisticated chemotaxis network to generate coordinated chemotaxis behavior, which features high sensitivity, a wide dynamic range, and robustness against variations in background stimulation, protein levels, and temperature. Although early studies relied on behavioral analyses to characterize chemotactic responses in vivo, or on biochemical assays to study the pathway in vitro, we describe here a method to directly measure the intracellular pathway response using Förster resonance energy transfer (FRET). In E. coli, the most commonly used form of the FRET assay relies on the interaction between the phosphorylated response regulator CheY and its phosphatase CheZ to quantify activity of the histidine kinase CheA. We further describe a FRET assay for Bacillus subtilis, which employs CheY and the motor-associated phosphatase FliY as a FRET pair. In particular, we highlight the use of FRET to quantify pathway properties, including signal amplification, dynamic range, and kinetics of adaptation.

Keywords

FRET CheA Kinase activity Real-time assay Chemotaxis Escherichia coli Bacillus subtilis Bacteria 

References

  1. 1.
    Berg HC (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72:19–54CrossRefGoogle Scholar
  2. 2.
    Berg HC, Brown DA (1972) Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239:500–504CrossRefGoogle Scholar
  3. 3.
    Macnab RM, Koshland DE Jr (1972) The gradient-sensing mechanism in bacterial chemotaxis. Proc Natl Acad Sci U S A 69:2509–2512CrossRefGoogle Scholar
  4. 4.
    Sourjik V (2004) Receptor clustering and signal processing in E. coli chemotaxis. Trends Microbiol 12:569–576CrossRefGoogle Scholar
  5. 5.
    Sourjik V, Wingreen NS (2012) Responding to chemical gradients: bacterial chemotaxis. Curr Opin Cell Biol 24:262–268CrossRefGoogle Scholar
  6. 6.
    Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5:1024–1037CrossRefGoogle Scholar
  7. 7.
    Briegel A, Li X, Bilwes AM, Hughes KT, Jensen GJ et al (2012) Bacterial chemoreceptor arrays are hexagonally packed trimers of receptor dimers networked by rings of kinase and coupling proteins. Proc Natl Acad Sci U S A 109:3766–3771CrossRefGoogle Scholar
  8. 8.
    Liu J, Hu B, Morado DR, Jani S, Manson MD et al (2012) Molecular architecture of chemoreceptor arrays revealed by cryoelectron tomography of Escherichia coli minicells. Proc Natl Acad Sci U S A 109:E1481–E1488CrossRefGoogle Scholar
  9. 9.
    Boldog T, Grimme S, Li M, Sligar SG, Hazelbauer GL (2006) Nanodiscs separate chemoreceptor oligomeric states and reveal their signaling properties. Proc Natl Acad Sci U S A 103:11509–11514CrossRefGoogle Scholar
  10. 10.
    Shimizu TS, Le Novere N, Levin MD, Beavil AJ, Sutton BJ et al (2000) Molecular model of a lattice of signalling proteins involved in bacterial chemotaxis. Nat Cell Biol 2:792–796CrossRefGoogle Scholar
  11. 11.
    Studdert CA, Parkinson JS (2007) In vivo crosslinking methods for analyzing the assembly and architecture of chemoreceptor arrays. Methods Enzymol 423:414–431CrossRefGoogle Scholar
  12. 12.
    Gegner JA, Graham DR, Roth AF, Dahlquist FW (1992) Assembly of an MCP receptor, CheW, and kinase CheA complex in the bacterial chemotaxis signal transduction pathway. Cell 70:975–982CrossRefGoogle Scholar
  13. 13.
    Adler J, Hazelbauer GL, Dahl MM (1973) Chemotaxis toward sugars in Escherichia coli. J Bacteriol 115:824–847PubMedPubMedCentralGoogle Scholar
  14. 14.
    Kondoh H, Ball CB, Adler J (1979) Identification of a methyl-accepting chemotaxis protein for the ribose and galactose chemoreceptors of Escherichia coli. Proc Natl Acad Sci U S A 76:260–264CrossRefGoogle Scholar
  15. 15.
    Mesibov R, Adler J (1972) Chemotaxis toward amino acids in Escherichia coli. J Bacteriol 112:315–326PubMedPubMedCentralGoogle Scholar
  16. 16.
    Springer MS, Goy MF, Adler J (1979) Protein methylation in behavioural control mechanisms and in signal transduction. Nature 280:279–284CrossRefGoogle Scholar
  17. 17.
    Hazelbauer GL, Engstrom P (1980) Parallel pathways for transduction of chemotactic signals in Escherichia coli. Nature 283:98–100CrossRefGoogle Scholar
  18. 18.
    Manson MD, Blank V, Brade G, Higgins CF (1986) Peptide chemotaxis in E. coli involves the Tap signal transducer and the dipeptide permease. Nature 321:253–256CrossRefGoogle Scholar
  19. 19.
    Rebbapragada A, Johnson MS, Harding GP, Zuccarelli AJ, Fletcher HM et al (1997) The Aer protein and the serine chemoreceptor Tsr independently sense intracellular energy levels and transduce oxygen, redox, and energy signals for Escherichia coli behavior. Proc Natl Acad Sci U S A 94:10541–10546CrossRefGoogle Scholar
  20. 20.
    Hegde M, Englert DL, Schrock S, Cohn WB, Vogt C et al. (2011) Chemotaxis to the quorum-sensing signal AI-2 requires the Tsr chemoreceptor and the periplasmic LsrB AI-2-binding protein. J Bacteriol 193:768–773CrossRefGoogle Scholar
  21. 21.
    Laganenka L, Colin R, Sourjik V (2016) Chemotaxis towards autoinducer 2 mediates autoaggregation in Escherichia coli. Nat Commun 7:12984CrossRefGoogle Scholar
  22. 22.
    Liu X, Wood PL, Parales JV, Parales RE (2009) Chemotaxis to pyrimidines and identification of a cytosine chemoreceptor in Pseudomonas putida. J Bacteriol 191:2909–2916CrossRefGoogle Scholar
  23. 23.
    Neumann S, Hansen CH, Wingreen NS, Sourjik V (2010) Differences in signalling by directly and indirectly binding ligands in bacterial chemotaxis. EMBO J 29:3484–3495CrossRefGoogle Scholar
  24. 24.
    Bray D, Levin MD, Morton-Firth CJ (1998) Receptor clustering as a cellular mechanism to control sensitivity. Nature 393:85–88. https://doi.org/10.1038/30018 CrossRefPubMedGoogle Scholar
  25. 25.
    Ames P, Studdert CA, Reiser RH, Parkinson JS (2002) Collaborative signaling by mixed chemoreceptor teams in Escherichia coli. Proc Natl Acad Sci U S A 99:7060–7065CrossRefGoogle Scholar
  26. 26.
    Briegel A, Ladinsky MS, Oikonomou C, Jones CW, Harris MJ et al (2014) Structure of bacterial cytoplasmic chemoreceptor arrays and implications for chemotactic signaling. elife 3:e02151CrossRefGoogle Scholar
  27. 27.
    Maddock JR, Shapiro L (1993) Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259:1717–1723CrossRefGoogle Scholar
  28. 28.
    Sourjik V, Berg HC (2000) Localization of components of the chemotaxis machinery of Escherichia coli using fluorescent protein fusions. Mol Microbiol 37:740–751CrossRefGoogle Scholar
  29. 29.
    Mello BA, Tu Y (2005) An allosteric model for heterogeneous receptor complexes: understanding bacterial chemotaxis responses to multiple stimuli. Proc Natl Acad Sci U S A 102:17354–17359CrossRefGoogle Scholar
  30. 30.
    Kalinin Y, Neumann S, Sourjik V, Wu M (2010) Responses of Escherichia coli bacteria to two opposing chemoattractant gradients depend on the chemoreceptor ratio. J Bacteriol 192:1796–1800CrossRefGoogle Scholar
  31. 31.
    Sourjik V, Berg HC (2004) Functional interactions between receptors in bacterial chemotaxis. Nature 428:437–441CrossRefGoogle Scholar
  32. 32.
    Berg HC, Purcell EM (1977) Physics of chemoreception. Biophys J 20:193–219CrossRefGoogle Scholar
  33. 33.
    Bialek W, Setayeshgar S (2005) Physical limits to biochemical signaling. Proc Natl Acad Sci U S A 102:10040–10045CrossRefGoogle Scholar
  34. 34.
    Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions - a plausible model. J Mol Biol 12:88–118CrossRefGoogle Scholar
  35. 35.
    Adler J, Tso WW (1974) “Decision”-making in bacteria: chemotactic response of Escherichia coli to conflicting stimuli. Science 184:1292–1294CrossRefGoogle Scholar
  36. 36.
    Alon U, Surette MG, Barkai N, Leibler S (1999) Robustness in bacterial chemotaxis. Nature 397:168–171CrossRefGoogle Scholar
  37. 37.
    Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387:913–917CrossRefGoogle Scholar
  38. 38.
    Yi TM, Huang Y, Simon MI, Doyle J (2000) Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc Natl Acad Sci U S A 97:4649–4653CrossRefGoogle Scholar
  39. 39.
    Meir Y, Jakovljevic V, Oleksiuk O, Sourjik V, Wingreen NS (2010) Precision and kinetics of adaptation in bacterial chemotaxis. Biophys J 99:2766–2774.  https://doi.org/10.1016/j.bpj.2010.08.051 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Neumann S, Vladimirov N, Krembel AK, Wingreen NS, Sourjik V (2014) Imprecision of adaptation in Escherichia coli chemotaxis. PLoS One 9(1):e84904CrossRefGoogle Scholar
  41. 41.
    Vladimirov N, Lovdok L, Lebiedz D, Sourjik V (2008) Dependence of bacterial chemotaxis on gradient shape and adaptation rate. PLoS Computl Biol 4(12):e1000242CrossRefGoogle Scholar
  42. 42.
    Adler J, Li C, Boileau AJ, Qi Y, Kung C (1988) Osmotaxis in Escherichia coli. Cold Spring Harb Symp Quant Biol 53(Pt 1):19–22CrossRefGoogle Scholar
  43. 43.
    Yang Y, Sourjik V (2012) Opposite responses by different chemoreceptors set a tunable reference point in Escherichia coli pH taxis. Mol Microbiol 86:1482–1489CrossRefGoogle Scholar
  44. 44.
    Maeda K, Imae Y (1979) Thermosensory transduction in Escherichia coli: inhibition of the thermoresponse by L-serine. Proc Natl Acad Sci U S A 76:91–95CrossRefGoogle Scholar
  45. 45.
    Maeda K, Imae Y, Shioi JI, Oosawa F (1976) Effect of temperature on motility and chemotaxis of Escherichia coli. J Bacteriol 127:1039–1046PubMedPubMedCentralGoogle Scholar
  46. 46.
    Yoney A, Salman H (2015) Precision and variability in bacterial temperature sensing. Biophys J 108:2427–2436CrossRefGoogle Scholar
  47. 47.
    Hu B, Tu Y (2013) Precision sensing by two opposing gradient sensors: how does Escherichia coli find its preferred pH level? Biophys J 105:276–285CrossRefGoogle Scholar
  48. 48.
    Paulick A, Jakovljevic V, Zhang S, Erickstad M, Groisman A et al (2017) Mechanism of bidirectional thermotaxis in Escherichia coli. eLife 6. https://doi.org/10.7554/eLife.26607.
  49. 49.
    Szurmant H, Ordal GW (2004) Diversity in chemotaxis mechanisms among the bacteria and archaea. Mirobiol Mol Biol Rev 68:301–319CrossRefGoogle Scholar
  50. 50.
    Cannistraro VJ, Glekas GD, Rao CV, Ordal GW (2011) Cellular stoichiometry of the chemotaxis proteins in Bacillus subtilis. J Bacteriol 193(13):3220–3227CrossRefGoogle Scholar
  51. 51.
    Szurmant H, Bunn MW, Cannistraro VJ, Ordal GW (2003) Bacillus subtilis hydrolyzes CheY-P at the location of its action, the flagellar switch. J Biol Chem 278:48611–48616CrossRefGoogle Scholar
  52. 52.
    Szurmant H, Muff TJ, Ordal GW (2004) Bacillus subtilis CheC and FliY are members of a novel class of CheY-P-hydrolyzing proteins in the chemotactic signal transduction cascade. J Biol Chem 279:21787–21792CrossRefGoogle Scholar
  53. 53.
    Larsen SH, Reader RW, Kort EN, Tso WW, Adler J (1974) Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature 249:74–77CrossRefGoogle Scholar
  54. 54.
    Chen X, Berg HC (2000) Torque-speed relationship of the flagellar rotary motor of Escherichia coli. Biophys J 78:1036–1041CrossRefGoogle Scholar
  55. 55.
    Silverman M, Simon M (1974) Flagellar rotation and the mechanism of bacterial motility. Nature 249:73–74CrossRefGoogle Scholar
  56. 56.
    Sowa Y, Berry RM (2008) Bacterial flagellar motor. Q Rev Biophys 41:103–132CrossRefGoogle Scholar
  57. 57.
    Sourjik V, Berg HC (2002) Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer. Proc Natl Acad Sci U S A 99:12669–12674CrossRefGoogle Scholar
  58. 58.
    Sourjik V, Berg HC (2002) Receptor sensitivity in bacterial chemotaxis. Proc Natl Acad Sci U S A 99:123–127CrossRefGoogle Scholar
  59. 59.
    Yang Y, M Pollard A, Hofler C, Poschet G, Wirtz M et al (2015) Relation between chemotaxis and consumption of amino acids in bacteria. Mol Microbiol 96:1272–1282CrossRefGoogle Scholar
  60. 60.
    Kentner D, Sourjik V (2009) Dynamic map of protein interactions in the Escherichia coli chemotaxis pathway. Mol Syst Biol 5:238CrossRefGoogle Scholar
  61. 61.
    Wouters FS, Verveer PJ, Bastiaens PI (2001) Imaging biochemistry inside cells. Trends Cell Biol 11:203–211CrossRefGoogle Scholar
  62. 62.
    Miyawaki A, Tsien RY (2000) Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein. Methods Enzymol 327:472–500CrossRefGoogle Scholar
  63. 63.
    Lam AJ, St-Pierre F, Gong Y, Marshall JD, Cranfill PJ et al (2012) Improving FRET dynamic range with bright green and red fluorescent proteins. Nat Methods 9:1005–1012CrossRefGoogle Scholar
  64. 64.
    Selvin PR (1995) Fluorescence resonance energy transfer. Methods Enzymol 246:300–334CrossRefGoogle Scholar
  65. 65.
    Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544CrossRefGoogle Scholar
  66. 66.
    Hochreiter B, Garcia AP, Schmid JA (2015) Fluorescent proteins as genetically encoded FRET biosensors in life sciences. Sensors 15:26281–26341CrossRefGoogle Scholar
  67. 67.
    Wallrabe H, Periasamy A (2005) Imaging protein molecules using FRET and FLIM microscopy. Curr Opin Biotechnol 16:19–27CrossRefGoogle Scholar
  68. 68.
    Van Munster EB, Kremers GJ, Adjobo-Hermans MJ, Gadella TW Jr (2005) Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching. J Microsc 218(Pt 3):253–262CrossRefGoogle Scholar
  69. 69.
    Parkinson JS, Houts SE (1982) Isolation and behavior of Escherichia coli deletion mutants lacking chemotaxis functions. J Bacteriol 151(1):106–113PubMedPubMedCentralGoogle Scholar
  70. 70.
    Amann E, Ochs B, Abel KJ (1988) Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene 69:301–315CrossRefGoogle Scholar
  71. 71.
    Yen KM (1991) Construction of cloning cartridges for development of expression vectors in gram-negative bacteria. J Bacteriol 173:5328–5335CrossRefGoogle Scholar
  72. 72.
    Burkholder PR, Giles NH Jr (1947) Induced biochemical mutations in Bacillus subtilis. Am J Bot 34:345–348CrossRefGoogle Scholar
  73. 73.
    Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G et al (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256CrossRefGoogle Scholar
  74. 74.
    Berg HC, Block SM (1984) A miniature flow cell designed for rapid exchange of media under high-power microscope objectives. J Gen Microbiol 130:2915–2920Google Scholar
  75. 75.
    Krembel AK, Neumann S, Sourjik V (2015) Universal response-adaptation relation in bacterial chemotaxis. J Bacteriol 197:307–313CrossRefGoogle Scholar
  76. 76.
    Oleksiuk O, Jakovljevic V, Vladimirov N, Carvalho R, Paster E et al (2011) Thermal robustness of signaling in bacterial chemotaxis. Cell 145:312–321CrossRefGoogle Scholar
  77. 77.
    Sourjik V, Vaknin A, Shimizu TS, Berg HC (2007) In vivo measurement by FRET of pathway activity in bacterial chemotaxis. Methods Enzymol 423:365–391CrossRefGoogle Scholar
  78. 78.
    Lan G, Sartori P, Neumann S, Sourjik V, Tu Y (2012) The energy-speed-accuracy tradeoff in sensory adaptation. Nat Phys 8:422–428CrossRefGoogle Scholar
  79. 79.
    Lazova MD, Ahmed T, Bellomo D, Stocker R, Shimizu TS (2011) Response rescaling in bacterial chemotaxis. Proc Natl Acad Sci U S A 108:13870–13875CrossRefGoogle Scholar
  80. 80.
    Endres RG, Oleksiuk O, Hansen CH, Meir Y, Sourjik V et al (2008) Variable sizes of Escherichia coli chemoreceptor signaling teams. Mol Syst Biol 4:211CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
  2. 2.LOEWE Research Center for Synthetic Microbiology (SYNMIKRO)MarburgGermany

Personalised recommendations