In Vitro Assay for Measuring Receptor-Kinase Activity in the Bacillus subtilis Chemotaxis Pathway

  • Hanna E. Walukiewicz
  • George W. Ordal
  • Christopher V. Rao
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1729)

Abstract

The sensing apparatus of the Bacillus subtilis chemotaxis pathway involves a complex consisting of chemoreceptors, the CheA histidine kinase, and the CheV and CheW adaptor proteins. Attractants and repellents alter the rate of CheA autophosphorylation, either by directly binding the receptors or by indirectly interacting with them through intermediate binding proteins. We describe an in vitro assay for measuring receptor-kinase activity in B. subtilis. This assay has been used to investigate the mechanism of signal transduction in B. subtilis chemotaxis and the disparate mechanisms employed by this bacterium for sensory adaptation and gradient sensing.

Keywords

Chemotaxis Bacillus subtilis Chemoreceptors CheA Kinase assay 

Notes

Acknowledgment

This work was supported by National Institutes of Health Grant GM054365.

References

  1. 1.
    Adler J (1966) Chemotaxis in bacteria. Science 153:708–716CrossRefGoogle Scholar
  2. 2.
    Rao CV, Glekas GD, Ordal GW (2008) The three adaptation systems of Bacillus subtilis chemotaxis. Trends Microbiol 16:480–487CrossRefGoogle Scholar
  3. 3.
    Rao CV, Ordal GW (2009) The molecular basis of excitation and adaptation during chemotactic sensory transduction in bacteria. Contrib Microbiol 16:33–64CrossRefGoogle Scholar
  4. 4.
    Glekas GD, Mulhern BJ, Kroc A, Duelfer KA, Lei V et al (2012) The Bacillus subtilis chemoreceptor McpC senses multiple ligands using two discrete mechanisms. J Biol Chem 287:39412–39418CrossRefGoogle Scholar
  5. 5.
    Garrity LF, Ordal GW (1997) Activation of the CheA kinase by asparagine in Bacillus subtilis chemotaxis. Microbiology 143:2945–2951CrossRefGoogle Scholar
  6. 6.
    Bischoff DS, Bourret RB, Kirsch ML, Ordal GW (1993) Purification and characterization of Bacillus subtilis CheY. Biochemistry 32:9256–9261CrossRefGoogle Scholar
  7. 7.
    Bischoff DS, Ordal GW (1991) Sequence and characterization of Bacillus subtilis CheB, a homolog of Escherichia coli CheY, and its role in a different mechanism of chemotaxis. J Biol Chem 266:12301–12305PubMedGoogle Scholar
  8. 8.
    Borkovich KA, Kaplan N, Hess JF, Simon MI (1989) Transmembrane signal transduction in bacterial chemotaxis involves ligand-dependent activation of phosphate group transfer. Proc Natl Acad Sci U S A 86:1208–1212CrossRefGoogle Scholar
  9. 9.
    Lai RZ, Manson JM, Bormans AF, Draheim RR, Nguyen NT et al (2005) Cooperative signaling among bacterial chemoreceptors. Biochemistry 44:14298–14307CrossRefGoogle Scholar
  10. 10.
    Li M, Hazelbauer GL (2011) Core unit of chemotaxis signaling complexes. Proc Natl Acad Sci U S A 108:9390–9395CrossRefGoogle Scholar
  11. 11.
    Swain KE, Gonzalez MA, Falke JJ (2009) Engineered socket study of signaling through a four-helix bundle: evidence for a yin-yang mechanism in the kinase control module of the aspartate receptor. Biochemistry 48:9266–9277CrossRefGoogle Scholar
  12. 12.
    Bornhorst JA, Falke JJ (2000) Attractant regulation of the aspartate receptor-kinase complex: limited cooperative interactions between receptors and effects of the receptor modification state. Biochemistry 39:9486–9493CrossRefGoogle Scholar
  13. 13.
    Borkovich KA, Simon MI (1990) The dynamics of protein phosphorylation in bacterial chemotaxis. Cell 63:1339–1348CrossRefGoogle Scholar
  14. 14.
    Hazelbauer GL, Falke JJ, Parkinson JS (2008) Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci 33:9–19.  https://doi.org/10.1016/j.tibs.2007.09.014 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Borkovich KA, Alex LA, Simon MI (1992) Attenuation of sensory receptor signaling by covalent modification. Proc Natl Acad Sci U S A 89:6756–6760CrossRefGoogle Scholar
  16. 16.
    Dunten P, Koshland DE Jr (1991) Tuning the responsiveness of a sensory receptor via covalent modification. J Biol Chem 266:1491–1496PubMedGoogle Scholar
  17. 17.
    Springer MS, Goy MF, Adler J (1977) Sensory transduction in Escherichia coli: a requirement for methionine in sensory adaptation. Proc Natl Acad Sci U S A 74:183–187CrossRefGoogle Scholar
  18. 18.
    Sourjik V, Wingreen NS (2012) Responding to chemical gradients: bacterial chemotaxis. Curr Opin Cell Biol 24:262–268CrossRefGoogle Scholar
  19. 19.
    Zimmer MA, Tiu J, Collins MA, Ordal GW (2000) Selective methylation changes on the Bacillus subtilis chemotaxis receptor McpB promote adaptation. J Biol Chem 275:24264–24272CrossRefGoogle Scholar
  20. 20.
    Glekas GD, Cates JR, Cohen TM, Rao CV, Ordal GW (2011) Site-specific methylation in Bacillus subtilis chemotaxis: effect of covalent modifications to the chemotaxis receptor McpB. Microbiology 157:56–65CrossRefGoogle Scholar
  21. 21.
    Walukiewicz HE, Tohidifar P, Ordal GW, Rao CV (2014) Interactions among the three adaptation systems of Bacillus subtilis chemotaxis as revealed by an in vitro receptor-kinase assay. Mol Microbiol 93:1104–1118PubMedGoogle Scholar
  22. 22.
    Glekas GD, Plutz MJ, Walukiewicz HE, Allen GM, Rao CV et al (2012) Elucidation of the multiple roles of CheD in Bacillus subtilis chemotaxis. Mol Microbiol 86:743–756CrossRefGoogle Scholar
  23. 23.
    Muff TJ, Ordal GW (2007) The CheC phosphatase regulates chemotactic adaptation through CheD. J Biol Chem 282:34120–34128CrossRefGoogle Scholar
  24. 24.
    Chao X, Muff TJ, Park SY, Zhang S, Pollard AM et al (2006) A receptor-modifying deamidase in complex with a signaling phosphatase reveals reciprocal regulation. Cell 124:561–571CrossRefGoogle Scholar
  25. 25.
    Yuan W, Glekas GD, Allen GM, Walukiewicz HE, Rao CV et al (2012) The importance of the interaction of CheD with CheC and the chemoreceptors compared to its enzymatic activity during chemotaxis in Bacillus subtilis. PLoS One 7:e50689CrossRefGoogle Scholar
  26. 26.
    Mantsala P, Zalkin H (1980) Extracellular and membrane-bound proteases from Bacillus subtilis. J Bacteriol 141:493–501PubMedPubMedCentralGoogle Scholar
  27. 27.
    Tawa P, Stewart RC (1994) Kinetics of CheA autophosphorylation and dephosphorylation reactions. Biochemistry 33:7917–7924CrossRefGoogle Scholar
  28. 28.
    Ullah AH, Ordal GW (1981) Purification and characterization of methyl-accepting chemotaxis protein methyltransferase I in Bacillus subtilis. Biochem J 199:795–805CrossRefGoogle Scholar
  29. 29.
    Tan S (2001) A modular polycistronic expression system for overexpressing protein complexes in Escherichia coli. Protein Expr Purif 21:224–234CrossRefGoogle Scholar
  30. 30.
    Rabkin SD, Richardson CC (1988) Initiation of DNA replication at cloned origins of bacteriophage T7. J Mol Biol 204:903–916CrossRefGoogle Scholar
  31. 31.
    Conrad B, Savchenko RS, Breves R, Hofemeister J (1996) A T7 promoter-specific, inducible protein expression system for Bacillus subtilis. Mol Gen Genet 250:230–236PubMedGoogle Scholar
  32. 32.
    Cannistraro VJ, Glekas GD, Rao CV, Ordal GW (2011) Cellular stoichiometry of the chemotaxis proteins in Bacillus subtilis. J Bacteriol 193:3220–3227CrossRefGoogle Scholar
  33. 33.
    Cardozo MJ, Massazza DA, Parkinson JS, Studdert CA (2010) Disruption of chemoreceptor signalling arrays by high levels of CheW, the receptor-kinase coupling protein. Mol Microbiol 75:1171–1181CrossRefGoogle Scholar
  34. 34.
    Karatan E, Saulmon MM, Bunn MW, Ordal GW (2001) Phosphorylation of the response regulator CheV is required for adaptation to attractants during Bacillus subtilis chemotaxis. J Biol Chem 276:43618–43626CrossRefGoogle Scholar
  35. 35.
    Li M, Hazelbauer GL (2004) Cellular stoichiometry of the components of the chemotaxis signaling complex. J Bacteriol 186:3687–3694CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Hanna E. Walukiewicz
    • 1
  • George W. Ordal
    • 2
  • Christopher V. Rao
    • 1
  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Medical BiochemistryUniversity of IllinoisUrbanaUSA

Personalised recommendations