Skip to main content

Spared Nerve Injury as a Long-Lasting Model of Neuropathic Pain

  • Protocol
  • First Online:
Neurotrophic Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1727))

Abstract

This chapter describes surgical procedures for the induction of neuropathic pain using an animal model (rat or mouse) of spared nerve injury. In addition to technical details of the surgical technique, details of anesthesia and perioperative care are also included.

Serena Boccella and Francesca Guida share the first Authorship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107

    Article  CAS  PubMed  Google Scholar 

  2. Seltzer Z, Dubner R, Shir Y (1990) A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 43:205–218

    Article  CAS  PubMed  Google Scholar 

  3. Kim SH, Chung JM (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50:355–363

    Article  CAS  PubMed  Google Scholar 

  4. D’Aniello A, Luongo L, Romano R et al (2017) d-Aspartic acid ameliorates painful and neuropsychiatric changes and reduces β-amyloid Aβ(1-42) peptide in a long lasting model of neuropathic pain. Neurosci Lett 651:151–158

    Article  PubMed  Google Scholar 

  5. Decosterd I, Woolf CJ (2000) Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87:149–158

    Article  CAS  PubMed  Google Scholar 

  6. Shields SD, Eckert WA 3rd, Basbaum AI (2003) Spared nerve injury model of neuropathic pain in the mouse: a behavioral and anatomic analysis. J Pain 4:465–470

    Article  PubMed  Google Scholar 

  7. Guida F, Lattanzi R, Boccella S et al (2015) PC1, a non-peptide PKR1-preferring antagonist, reduces pain behavior and spinal neuronal sensitization in neuropathic mice. Pharmacol Res 91:36–46

    Article  CAS  PubMed  Google Scholar 

  8. Sagheddu C, Aroni S, De Felice M et al (2015) Enhanced serotonin and mesolimbic dopamine transmissions in a rat model of neuropathic pain. Neuropharmacology 97:383–393

    Article  CAS  PubMed  Google Scholar 

  9. Guida F, Luongo L, Marmo F et al (2015) Palmitoylethanolamide reduces pain-related behaviors and restores glutamatergic synapses homeostasis in the medial prefrontal cortex of neuropathic mice. Mol Brain 8:47. https://doi.org/10.1186/s13041-015-0139-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rossi F, Marabese I, De Chiaro M et al (2014) Dorsal striatum metabotropic glutamate receptor 8 affects nocifensive responses and rostral ventromedial medulla cell activity in neuropathic pain conditions. J Neurophysiol 111:2196–2209

    Article  CAS  PubMed  Google Scholar 

  11. de Novellis V, Vita D, Gatta L et al (2011) The blockade of the transient receptor potential vanilloid type 1 and fatty acid amide hydrolase decreases symptoms and central sequelae in the medial prefrontal cortex of neuropathic rats. Mol Pain 7:7. https://doi.org/10.1186/1744-8069-7-7

    Article  PubMed  PubMed Central  Google Scholar 

  12. Luongo L, Palazzo E, Tambaro S et al (2010) 1-(2′,4′-dichlorophenyl)-6-methyl-N-cyclohexylamine-1,4- ihydroindeno[1,2-c]pyraz ole-3-carboxamide, a novel CB2 agonist, alleviates neuropathic pain through functional microglial changes in mice. Neurobiol Dis 37:177–185

    Article  CAS  PubMed  Google Scholar 

  13. Luongo L, Petrelli R, Gatta L et al (2012) 5′-Chloro-5′-deoxy-(±)-ENBA, a potent and selective adenosine A(1) receptor agonist, alleviates neuropathic pain in mice through functional glial and microglial changes without affecting motor or cardiovascular functions. Molecules 17:13712–13726

    Article  CAS  PubMed  Google Scholar 

  14. Giordano C, Cristino L, Luongo L et al (2012) TRPV1-dependent and independent alterations in the limbic cortex of neuropathic mice: impact on glial caspases and pain perception. Cereb Cortex 22:2495–2518

    Article  PubMed  Google Scholar 

  15. Palazzo E, Romano R, Luongo L et al (2015) MMPIP, an mGluR7-selective negative allosteric modulator, alleviates pain and normalizes affective and cognitive behavior in neuropathic mice. Pain 156:1060–1073

    CAS  PubMed  Google Scholar 

  16. Palazzo E, Luongo L, Guida F et al (2016) D-Aspartate drinking solution alleviates pain and cognitive impairment in neuropathic mice. Amino Acids 48:1553–1567

    Article  CAS  PubMed  Google Scholar 

  17. Bonin RP, Bories C, De Koninck Y (2014) A simplified up-down method (SUDO) for measuring mechanical nociception in rodents using von Frey filaments. Mol Pain 10:26. https://doi.org/10.1186/1744-8069-10-26

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chaplan SR, Bach FW, Pogrel JW et al (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63

    Article  CAS  PubMed  Google Scholar 

  19. Hargreaves K, Dubner R, Brown F et al (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32:77–88

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Livio Luongo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Boccella, S. et al. (2018). Spared Nerve Injury as a Long-Lasting Model of Neuropathic Pain. In: Skaper, S. (eds) Neurotrophic Factors. Methods in Molecular Biology, vol 1727. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7571-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7571-6_28

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7570-9

  • Online ISBN: 978-1-4939-7571-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics