Advertisement

Active Induction of Experimental Autoimmune Encephalomyelitis in C57BL/6 Mice

  • Gabriella Contarini
  • Pietro Giusti
  • Stephen D. Skaper
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1727)

Abstract

The protocol in this chapter presents a method to actively induce experimental autoimmune encephalomyelitis (EAE), one of the most widely used animal models to study efficacy of potential drugs for treatment of multiple sclerosis. Multiple sclerosis is an inflammatory, demyelinating disease of the central nervous system and the most common cause of chronic neurological impairment in young people. In this model EAE is induced in female C57BL/6 mice by immunization with an emulsion of myelin oligodendrocyte glycoprotein (fragment 35–55) in complete Freund’s adjuvant, followed by administration of pertussis toxin in phosphate-buffered saline. EAE is evidenced by ascending flaccid paralysis with inflammation targeting the spinal cord.

Key words

Experimental autoimmune encephalomyelitis Multiple sclerosis Autoimmune Demyelination Oligodendrocyte Inflammation 

References

  1. 1.
    Tannenbaum J (2013) Ethics in biomedical animal research: the key role of the investigator. Animal models for the study of human disease. Elsevier.  https://doi.org/10.1016/B978-0-12-415894-8.00001-4
  2. 2.
    Kamm CP, Uitdehaag BM, Polman CH (2014) Multiple sclerosis: current knowledge and future outlook. Eur Neurol 72:132–141CrossRefPubMedGoogle Scholar
  3. 3.
    Campbell IL, Stalder AK, Akwa Y, Pagenstecher A, Asensio VC (1998) Transgenic models to study the actions of cytokines in the central nervous system. Neuroimmunomodulation 5:126–135CrossRefPubMedGoogle Scholar
  4. 4.
    Matsushima GK, Morell P (2001) The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol 11:107–116CrossRefPubMedGoogle Scholar
  5. 5.
    Ercolini AM, Miller SD (2006) Mechanisms of immunopathology in murine models of central nervous system demyelinating disease. J Immunol 176:3293–3298CrossRefPubMedGoogle Scholar
  6. 6.
    Zamvil SS, Steinman L (1990) The T lymphocyte in experimental allergic encephalomyelitis. Annu Rev Immunol 8:579–621CrossRefPubMedGoogle Scholar
  7. 7.
    Kuchroo VK, Anderson AC, Waldner H, Munder M, Bettelli E, Nicholson LB (2002) T cell response in experimental autoimmune encephalomyelitis (EAE): role of self and cross-reactive antigens in shaping, tuning, and regulating the autopathogenic T cell repertoire. Annu Rev Immunol 20:101–123CrossRefPubMedGoogle Scholar
  8. 8.
    Koritschoner RS, Schweinburg F (1925) Induktion von Paralyse und Rückenmarksentzündung durch Immunisierung von Kaninchen mit menschlichem Rückenmarksgewebe. Z Immunitätsf Exp Therapie 42:217–283Google Scholar
  9. 9.
    Rivers TM, Sprunt DH, Berry GP (1933) Observations on attempts to produce acute disseminated encephalomyelitis in monkeys. J Exp Med 58:39–53CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Paterson PY (1960) Transfer of allergic encephalomyelitis in rats by means of lymph node cells. J Exp Med 111:119–133CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bebo BF Jr, Fyfe-Johnson A, Adlard K, Beam AG, Vandenbark AA, Offner H (2001) Low-dose estrogen therapy ameliorates experimental autoimmune encephalomyelitis in two different inbred mouse strains. J Immunol 166:2080–2089CrossRefPubMedGoogle Scholar
  12. 12.
    Cravens PD, Hussain RZ, Zacharias TE, Ben LH, Herndon E, Vinnakota R, Lambracht-Washington D, Nessler S, Zamvil SS, Eagar TN, Stüve O (2011) Lymph node-derived donor encephalitogenic CD4+ T cells in C57BL/6 mice adoptive transfer experimental autoimmune encephalomyelitis highly express GM-CSF and T-bet. J Neuroinflammation 8:73.  https://doi.org/10.1186/1742-2094-8-73 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Teuscher C, Bunn JY, Fillmore PD, Butterfield RJ, Zachary JF, Blankenhorn EP (2004) Gender, age, and season at immunization uniquely influence the genetic control of susceptibility to histopathological lesions and clinical signs of experimental allergic encephalomyelitis: implications for the genetics of multiple sclerosis. Am J Pathol 165:1593–1602CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Massella A, D’Intino G, Fernández M, Sivilia S, Lorenzini L, Giatti S, Melcangi RC, Calzà L, Giardino L (2012) Gender effect on neurodegeneration and myelin markers in an animal model for multiple sclerosis. BMC Neurosci 13:12.  https://doi.org/10.1186/1471-2202-13-12 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Levine S, Sowinski R (1973) Experimental allergic encephalomyelitis in inbred and outbred mice. J Immunol 110:139–143PubMedGoogle Scholar
  16. 16.
    Ingunn MS, Joan MG (2006) Active induction of experimental allergic encephalomyelitis. Nature Protocols 1 (4):1810–1819Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  • Gabriella Contarini
    • 1
  • Pietro Giusti
    • 1
  • Stephen D. Skaper
    • 1
  1. 1.Department of Pharmaceutical and Pharmacological SciencesUniversity of PaduaPaduaItaly

Personalised recommendations